MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccss2 Structured version   Unicode version

Theorem iccss2 10981
Description: Condition for a closed interval to be a subset of another closed interval. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
iccss2  |-  ( ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B ) )  -> 
( C [,] D
)  C_  ( A [,] B ) )

Proof of Theorem iccss2
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-icc 10923 . . . . . 6  |-  [,]  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <_  y ) } )
21elixx3g 10929 . . . . 5  |-  ( C  e.  ( A [,] B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <_  C  /\  C  <_  B ) ) )
32simplbi 447 . . . 4  |-  ( C  e.  ( A [,] B )  ->  ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* ) )
43adantr 452 . . 3  |-  ( ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B ) )  -> 
( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* ) )
54simp1d 969 . 2  |-  ( ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B ) )  ->  A  e.  RR* )
64simp2d 970 . 2  |-  ( ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B ) )  ->  B  e.  RR* )
72simprbi 451 . . . 4  |-  ( C  e.  ( A [,] B )  ->  ( A  <_  C  /\  C  <_  B ) )
87adantr 452 . . 3  |-  ( ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B ) )  -> 
( A  <_  C  /\  C  <_  B ) )
98simpld 446 . 2  |-  ( ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B ) )  ->  A  <_  C )
101elixx3g 10929 . . . . 5  |-  ( D  e.  ( A [,] B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <_  D  /\  D  <_  B ) ) )
1110simprbi 451 . . . 4  |-  ( D  e.  ( A [,] B )  ->  ( A  <_  D  /\  D  <_  B ) )
1211simprd 450 . . 3  |-  ( D  e.  ( A [,] B )  ->  D  <_  B )
1312adantl 453 . 2  |-  ( ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B ) )  ->  D  <_  B )
14 xrletr 10748 . . 3  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  w  e. 
RR* )  ->  (
( A  <_  C  /\  C  <_  w )  ->  A  <_  w
) )
15 xrletr 10748 . . 3  |-  ( ( w  e.  RR*  /\  D  e.  RR*  /\  B  e. 
RR* )  ->  (
( w  <_  D  /\  D  <_  B )  ->  w  <_  B
) )
161, 1, 14, 15ixxss12 10936 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A  <_  C  /\  D  <_  B ) )  ->  ( C [,] D )  C_  ( A [,] B ) )
175, 6, 9, 13, 16syl22anc 1185 1  |-  ( ( C  e.  ( A [,] B )  /\  D  e.  ( A [,] B ) )  -> 
( C [,] D
)  C_  ( A [,] B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    e. wcel 1725    C_ wss 3320   class class class wbr 4212  (class class class)co 6081   RR*cxr 9119    <_ cle 9121   [,]cicc 10919
This theorem is referenced by:  ordtresticc  17287  iccconn  18861  icccvx  18975  oprpiece1res1  18976  oprpiece1res2  18977  pcoass  19049  dvlip  19877  c1liplem1  19880  dvgt0lem1  19886  ftc2ditglem  19929  unitssxrge0  24298  xrge0iifhmeo  24322
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-pre-lttri 9064  ax-pre-lttrn 9065
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-po 4503  df-so 4504  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-icc 10923
  Copyright terms: Public domain W3C validator