MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccsupr Unicode version

Theorem iccsupr 10752
Description: A nonempty subset of a closed real interval satisfies the conditions for the existence of its supremum (see suprcl 9730). (Contributed by Paul Chapman, 21-Jan-2008.)
Assertion
Ref Expression
iccsupr  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B )  /\  C  e.  S )  ->  ( S  C_  RR  /\  S  =/=  (/)  /\  E. x  e.  RR  A. y  e.  S  y  <_  x ) )
Distinct variable groups:    y, A    x, B, y    x, S, y
Allowed substitution hints:    A( x)    C( x, y)

Proof of Theorem iccsupr
StepHypRef Expression
1 iccssre 10747 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
2 sstr 3200 . . . . 5  |-  ( ( S  C_  ( A [,] B )  /\  ( A [,] B )  C_  RR )  ->  S  C_  RR )
32ancoms 439 . . . 4  |-  ( ( ( A [,] B
)  C_  RR  /\  S  C_  ( A [,] B
) )  ->  S  C_  RR )
41, 3sylan 457 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B ) )  ->  S  C_  RR )
543adant3 975 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B )  /\  C  e.  S )  ->  S  C_  RR )
6 ne0i 3474 . . 3  |-  ( C  e.  S  ->  S  =/=  (/) )
763ad2ant3 978 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B )  /\  C  e.  S )  ->  S  =/=  (/) )
8 simplr 731 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B ) )  ->  B  e.  RR )
9 ssel 3187 . . . . . . . 8  |-  ( S 
C_  ( A [,] B )  ->  (
y  e.  S  -> 
y  e.  ( A [,] B ) ) )
10 elicc2 10731 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( y  e.  ( A [,] B )  <-> 
( y  e.  RR  /\  A  <_  y  /\  y  <_  B ) ) )
1110biimpd 198 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( y  e.  ( A [,] B )  ->  ( y  e.  RR  /\  A  <_ 
y  /\  y  <_  B ) ) )
129, 11sylan9r 639 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B ) )  ->  ( y  e.  S  ->  ( y  e.  RR  /\  A  <_ 
y  /\  y  <_  B ) ) )
1312imp 418 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B
) )  /\  y  e.  S )  ->  (
y  e.  RR  /\  A  <_  y  /\  y  <_  B ) )
1413simp3d 969 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B
) )  /\  y  e.  S )  ->  y  <_  B )
1514ralrimiva 2639 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B ) )  ->  A. y  e.  S  y  <_  B )
16 breq2 4043 . . . . . 6  |-  ( x  =  B  ->  (
y  <_  x  <->  y  <_  B ) )
1716ralbidv 2576 . . . . 5  |-  ( x  =  B  ->  ( A. y  e.  S  y  <_  x  <->  A. y  e.  S  y  <_  B ) )
1817rspcev 2897 . . . 4  |-  ( ( B  e.  RR  /\  A. y  e.  S  y  <_  B )  ->  E. x  e.  RR  A. y  e.  S  y  <_  x )
198, 15, 18syl2anc 642 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B ) )  ->  E. x  e.  RR  A. y  e.  S  y  <_  x )
20193adant3 975 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B )  /\  C  e.  S )  ->  E. x  e.  RR  A. y  e.  S  y  <_  x )
215, 7, 203jca 1132 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B )  /\  C  e.  S )  ->  ( S  C_  RR  /\  S  =/=  (/)  /\  E. x  e.  RR  A. y  e.  S  y  <_  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557    C_ wss 3165   (/)c0 3468   class class class wbr 4039  (class class class)co 5874   RRcr 8752    <_ cle 8884   [,]cicc 10675
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-pre-lttri 8827  ax-pre-lttrn 8828
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-icc 10679
  Copyright terms: Public domain W3C validator