MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icoopnst Unicode version

Theorem icoopnst 18835
Description: A half-open interval starting at  A is open in the closed interval from  A to  B. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypothesis
Ref Expression
icoopnst.1  |-  J  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( A [,] B )  X.  ( A [,] B ) ) ) )
Assertion
Ref Expression
icoopnst  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A (,] B )  ->  ( A [,) C )  e.  J
) )

Proof of Theorem icoopnst
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 iooretop 18671 . . . . 5  |-  ( ( A  -  1 ) (,) C )  e.  ( topGen `  ran  (,) )
2 simp1 957 . . . . . . . . . . 11  |-  ( ( v  e.  RR  /\  A  <_  v  /\  v  <  C )  ->  v  e.  RR )
32a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( (
v  e.  RR  /\  A  <_  v  /\  v  <  C )  ->  v  e.  RR ) )
4 ltm1 9782 . . . . . . . . . . . . . . . 16  |-  ( A  e.  RR  ->  ( A  -  1 )  <  A )
54adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  v  e.  RR )  ->  ( A  -  1 )  <  A )
6 peano2rem 9299 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  RR  ->  ( A  -  1 )  e.  RR )
76adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR  /\  v  e.  RR )  ->  ( A  -  1 )  e.  RR )
8 ltletr 9099 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  -  1 )  e.  RR  /\  A  e.  RR  /\  v  e.  RR )  ->  (
( ( A  - 
1 )  <  A  /\  A  <_  v )  ->  ( A  - 
1 )  <  v
) )
983expb 1154 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  -  1 )  e.  RR  /\  ( A  e.  RR  /\  v  e.  RR ) )  ->  ( (
( A  -  1 )  <  A  /\  A  <_  v )  -> 
( A  -  1 )  <  v ) )
107, 9mpancom 651 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  v  e.  RR )  ->  ( ( ( A  -  1 )  < 
A  /\  A  <_  v )  ->  ( A  -  1 )  < 
v ) )
115, 10mpand 657 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  v  e.  RR )  ->  ( A  <_  v  ->  ( A  -  1 )  <  v ) )
1211impr 603 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( v  e.  RR  /\  A  <_  v )
)  ->  ( A  -  1 )  < 
v )
13123adantr3 1118 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <  C ) )  ->  ( A  - 
1 )  <  v
)
1413ex 424 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  (
( v  e.  RR  /\  A  <_  v  /\  v  <  C )  -> 
( A  -  1 )  <  v ) )
1514ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( (
v  e.  RR  /\  A  <_  v  /\  v  <  C )  ->  ( A  -  1 )  <  v ) )
16 simp3 959 . . . . . . . . . . 11  |-  ( ( v  e.  RR  /\  A  <_  v  /\  v  <  C )  ->  v  <  C )
1716a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( (
v  e.  RR  /\  A  <_  v  /\  v  <  C )  ->  v  <  C ) )
183, 15, 173jcad 1135 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( (
v  e.  RR  /\  A  <_  v  /\  v  <  C )  ->  (
v  e.  RR  /\  ( A  -  1
)  <  v  /\  v  <  C ) ) )
19 simp2 958 . . . . . . . . . . 11  |-  ( ( v  e.  RR  /\  A  <_  v  /\  v  <  C )  ->  A  <_  v )
2019a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( (
v  e.  RR  /\  A  <_  v  /\  v  <  C )  ->  A  <_  v ) )
21 rexr 9063 . . . . . . . . . . . . 13  |-  ( A  e.  RR  ->  A  e.  RR* )
22 elioc2 10905 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( C  e.  ( A (,] B )  <->  ( C  e.  RR  /\  A  < 
C  /\  C  <_  B ) ) )
2321, 22sylan 458 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A (,] B )  <-> 
( C  e.  RR  /\  A  <  C  /\  C  <_  B ) ) )
2423biimpa 471 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( C  e.  RR  /\  A  < 
C  /\  C  <_  B ) )
25 ltletr 9099 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( v  e.  RR  /\  C  e.  RR  /\  B  e.  RR )  ->  (
( v  <  C  /\  C  <_  B )  ->  v  <  B
) )
26 ltle 9096 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( v  e.  RR  /\  B  e.  RR )  ->  ( v  <  B  ->  v  <_  B )
)
27263adant2 976 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( v  e.  RR  /\  C  e.  RR  /\  B  e.  RR )  ->  (
v  <  B  ->  v  <_  B ) )
2825, 27syld 42 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( v  e.  RR  /\  C  e.  RR  /\  B  e.  RR )  ->  (
( v  <  C  /\  C  <_  B )  ->  v  <_  B
) )
29283expa 1153 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( v  e.  RR  /\  C  e.  RR )  /\  B  e.  RR )  ->  ( ( v  <  C  /\  C  <_  B )  ->  v  <_  B ) )
3029an31s 782 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( B  e.  RR  /\  C  e.  RR )  /\  v  e.  RR )  ->  ( ( v  <  C  /\  C  <_  B )  ->  v  <_  B ) )
3130imp 419 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( B  e.  RR  /\  C  e.  RR )  /\  v  e.  RR )  /\  (
v  <  C  /\  C  <_  B ) )  ->  v  <_  B
)
3231ancom2s 778 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( B  e.  RR  /\  C  e.  RR )  /\  v  e.  RR )  /\  ( C  <_  B  /\  v  <  C ) )  -> 
v  <_  B )
3332an4s 800 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( B  e.  RR  /\  C  e.  RR )  /\  C  <_  B )  /\  (
v  e.  RR  /\  v  <  C ) )  ->  v  <_  B
)
34333adantr2 1117 . . . . . . . . . . . . . . 15  |-  ( ( ( ( B  e.  RR  /\  C  e.  RR )  /\  C  <_  B )  /\  (
v  e.  RR  /\  A  <_  v  /\  v  <  C ) )  -> 
v  <_  B )
3534ex 424 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  RR  /\  C  e.  RR )  /\  C  <_  B
)  ->  ( (
v  e.  RR  /\  A  <_  v  /\  v  <  C )  ->  v  <_  B ) )
3635anasss 629 . . . . . . . . . . . . 13  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  C  <_  B )
)  ->  ( (
v  e.  RR  /\  A  <_  v  /\  v  <  C )  ->  v  <_  B ) )
37363adantr2 1117 . . . . . . . . . . . 12  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  A  <  C  /\  C  <_  B ) )  ->  ( ( v  e.  RR  /\  A  <_  v  /\  v  < 
C )  ->  v  <_  B ) )
3837adantll 695 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  < 
C  /\  C  <_  B ) )  ->  (
( v  e.  RR  /\  A  <_  v  /\  v  <  C )  -> 
v  <_  B )
)
3924, 38syldan 457 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( (
v  e.  RR  /\  A  <_  v  /\  v  <  C )  ->  v  <_  B ) )
403, 20, 393jcad 1135 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( (
v  e.  RR  /\  A  <_  v  /\  v  <  C )  ->  (
v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) )
4118, 40jcad 520 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( (
v  e.  RR  /\  A  <_  v  /\  v  <  C )  ->  (
( v  e.  RR  /\  ( A  -  1 )  <  v  /\  v  <  C )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) ) )
42 simpl1 960 . . . . . . . . 9  |-  ( ( ( v  e.  RR  /\  ( A  -  1 )  <  v  /\  v  <  C )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) )  ->  v  e.  RR )
43 simpr2 964 . . . . . . . . 9  |-  ( ( ( v  e.  RR  /\  ( A  -  1 )  <  v  /\  v  <  C )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) )  ->  A  <_  v
)
44 simpl3 962 . . . . . . . . 9  |-  ( ( ( v  e.  RR  /\  ( A  -  1 )  <  v  /\  v  <  C )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) )  ->  v  <  C
)
4542, 43, 443jca 1134 . . . . . . . 8  |-  ( ( ( v  e.  RR  /\  ( A  -  1 )  <  v  /\  v  <  C )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) )  ->  ( v  e.  RR  /\  A  <_ 
v  /\  v  <  C ) )
4641, 45impbid1 195 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( (
v  e.  RR  /\  A  <_  v  /\  v  <  C )  <->  ( (
v  e.  RR  /\  ( A  -  1
)  <  v  /\  v  <  C )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) ) )
47 simpll 731 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  A  e.  RR )
4824simp1d 969 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  C  e.  RR )
49 rexr 9063 . . . . . . . . 9  |-  ( C  e.  RR  ->  C  e.  RR* )
5048, 49syl 16 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  C  e.  RR* )
51 elico2 10906 . . . . . . . 8  |-  ( ( A  e.  RR  /\  C  e.  RR* )  -> 
( v  e.  ( A [,) C )  <-> 
( v  e.  RR  /\  A  <_  v  /\  v  <  C ) ) )
5247, 50, 51syl2anc 643 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( v  e.  ( A [,) C
)  <->  ( v  e.  RR  /\  A  <_ 
v  /\  v  <  C ) ) )
53 elin 3473 . . . . . . . 8  |-  ( v  e.  ( ( ( A  -  1 ) (,) C )  i^i  ( A [,] B
) )  <->  ( v  e.  ( ( A  - 
1 ) (,) C
)  /\  v  e.  ( A [,] B ) ) )
54 rexr 9063 . . . . . . . . . . . 12  |-  ( ( A  -  1 )  e.  RR  ->  ( A  -  1 )  e.  RR* )
556, 54syl 16 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  ( A  -  1 )  e.  RR* )
5655ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( A  -  1 )  e. 
RR* )
57 elioo2 10889 . . . . . . . . . 10  |-  ( ( ( A  -  1 )  e.  RR*  /\  C  e.  RR* )  ->  (
v  e.  ( ( A  -  1 ) (,) C )  <->  ( v  e.  RR  /\  ( A  -  1 )  < 
v  /\  v  <  C ) ) )
5856, 50, 57syl2anc 643 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( v  e.  ( ( A  - 
1 ) (,) C
)  <->  ( v  e.  RR  /\  ( A  -  1 )  < 
v  /\  v  <  C ) ) )
59 elicc2 10907 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( v  e.  ( A [,] B )  <-> 
( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) )
6059adantr 452 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( v  e.  ( A [,] B
)  <->  ( v  e.  RR  /\  A  <_ 
v  /\  v  <_  B ) ) )
6158, 60anbi12d 692 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( (
v  e.  ( ( A  -  1 ) (,) C )  /\  v  e.  ( A [,] B ) )  <->  ( (
v  e.  RR  /\  ( A  -  1
)  <  v  /\  v  <  C )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) ) )
6253, 61syl5bb 249 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( v  e.  ( ( ( A  -  1 ) (,) C )  i^i  ( A [,] B ) )  <-> 
( ( v  e.  RR  /\  ( A  -  1 )  < 
v  /\  v  <  C )  /\  ( v  e.  RR  /\  A  <_  v  /\  v  <_  B ) ) ) )
6346, 52, 623bitr4d 277 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( v  e.  ( A [,) C
)  <->  v  e.  ( ( ( A  - 
1 ) (,) C
)  i^i  ( A [,] B ) ) ) )
6463eqrdv 2385 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( A [,) C )  =  ( ( ( A  - 
1 ) (,) C
)  i^i  ( A [,] B ) ) )
65 ineq1 3478 . . . . . . 7  |-  ( v  =  ( ( A  -  1 ) (,) C )  ->  (
v  i^i  ( A [,] B ) )  =  ( ( ( A  -  1 ) (,) C )  i^i  ( A [,] B ) ) )
6665eqeq2d 2398 . . . . . 6  |-  ( v  =  ( ( A  -  1 ) (,) C )  ->  (
( A [,) C
)  =  ( v  i^i  ( A [,] B ) )  <->  ( A [,) C )  =  ( ( ( A  - 
1 ) (,) C
)  i^i  ( A [,] B ) ) ) )
6766rspcev 2995 . . . . 5  |-  ( ( ( ( A  - 
1 ) (,) C
)  e.  ( topGen ` 
ran  (,) )  /\  ( A [,) C )  =  ( ( ( A  -  1 ) (,) C )  i^i  ( A [,] B ) ) )  ->  E. v  e.  ( topGen `  ran  (,) )
( A [,) C
)  =  ( v  i^i  ( A [,] B ) ) )
681, 64, 67sylancr 645 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  E. v  e.  ( topGen `  ran  (,) )
( A [,) C
)  =  ( v  i^i  ( A [,] B ) ) )
69 retop 18666 . . . . 5  |-  ( topGen ` 
ran  (,) )  e.  Top
70 ovex 6045 . . . . 5  |-  ( A [,] B )  e. 
_V
71 elrest 13582 . . . . 5  |-  ( ( ( topGen `  ran  (,) )  e.  Top  /\  ( A [,] B )  e. 
_V )  ->  (
( A [,) C
)  e.  ( (
topGen `  ran  (,) )t  ( A [,] B ) )  <->  E. v  e.  ( topGen `
 ran  (,) )
( A [,) C
)  =  ( v  i^i  ( A [,] B ) ) ) )
7269, 70, 71mp2an 654 . . . 4  |-  ( ( A [,) C )  e.  ( ( topGen ` 
ran  (,) )t  ( A [,] B ) )  <->  E. v  e.  ( topGen `  ran  (,) )
( A [,) C
)  =  ( v  i^i  ( A [,] B ) ) )
7368, 72sylibr 204 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( A [,) C )  e.  ( ( topGen `  ran  (,) )t  ( A [,] B ) ) )
74 iccssre 10924 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
7574adantr 452 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( A [,] B )  C_  RR )
76 eqid 2387 . . . . 5  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
77 icoopnst.1 . . . . 5  |-  J  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( A [,] B )  X.  ( A [,] B ) ) ) )
7876, 77resubmet 18704 . . . 4  |-  ( ( A [,] B ) 
C_  RR  ->  J  =  ( ( topGen `  ran  (,) )t  ( A [,] B
) ) )
7975, 78syl 16 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  J  =  ( ( topGen `  ran  (,) )t  ( A [,] B
) ) )
8073, 79eleqtrrd 2464 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  ( A (,] B ) )  ->  ( A [,) C )  e.  J
)
8180ex 424 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( C  e.  ( A (,] B )  ->  ( A [,) C )  e.  J
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   E.wrex 2650   _Vcvv 2899    i^i cin 3262    C_ wss 3263   class class class wbr 4153    X. cxp 4816   ran crn 4819    |` cres 4820    o. ccom 4822   ` cfv 5394  (class class class)co 6020   RRcr 8922   1c1 8924   RR*cxr 9052    < clt 9053    <_ cle 9054    - cmin 9223   (,)cioo 10848   (,]cioc 10849   [,)cico 10850   [,]cicc 10851   abscabs 11966   ↾t crest 13575   topGenctg 13592   MetOpencmopn 16617   Topctop 16881
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-er 6841  df-map 6956  df-en 7046  df-dom 7047  df-sdom 7048  df-sup 7381  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-n0 10154  df-z 10215  df-uz 10421  df-q 10507  df-rp 10545  df-xneg 10642  df-xadd 10643  df-xmul 10644  df-ioo 10852  df-ioc 10853  df-ico 10854  df-icc 10855  df-seq 11251  df-exp 11310  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-rest 13577  df-topgen 13594  df-xmet 16619  df-met 16620  df-bl 16621  df-mopn 16622  df-top 16886  df-bases 16888  df-topon 16889
  Copyright terms: Public domain W3C validator