MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icoshft Unicode version

Theorem icoshft 10774
Description: A shifted real is a member of a shifted, closed-below, open-above real interval. (Contributed by Paul Chapman, 25-Mar-2008.)
Assertion
Ref Expression
icoshft  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( X  e.  ( A [,) B )  ->  ( X  +  C )  e.  ( ( A  +  C ) [,) ( B  +  C )
) ) )

Proof of Theorem icoshft
StepHypRef Expression
1 rexr 8893 . . . . . 6  |-  ( B  e.  RR  ->  B  e.  RR* )
2 elico2 10730 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( X  e.  ( A [,) B )  <-> 
( X  e.  RR  /\  A  <_  X  /\  X  <  B ) ) )
31, 2sylan2 460 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( X  e.  ( A [,) B )  <-> 
( X  e.  RR  /\  A  <_  X  /\  X  <  B ) ) )
43biimpd 198 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( X  e.  ( A [,) B )  ->  ( X  e.  RR  /\  A  <_  X  /\  X  <  B
) ) )
543adant3 975 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( X  e.  ( A [,) B )  ->  ( X  e.  RR  /\  A  <_  X  /\  X  < 
B ) ) )
6 3anass 938 . . 3  |-  ( ( X  e.  RR  /\  A  <_  X  /\  X  <  B )  <->  ( X  e.  RR  /\  ( A  <_  X  /\  X  <  B ) ) )
75, 6syl6ib 217 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( X  e.  ( A [,) B )  ->  ( X  e.  RR  /\  ( A  <_  X  /\  X  <  B ) ) ) )
8 leadd1 9258 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  X  e.  RR  /\  C  e.  RR )  ->  ( A  <_  X  <->  ( A  +  C )  <_  ( X  +  C )
) )
983com12 1155 . . . . . . . . 9  |-  ( ( X  e.  RR  /\  A  e.  RR  /\  C  e.  RR )  ->  ( A  <_  X  <->  ( A  +  C )  <_  ( X  +  C )
) )
1093expib 1154 . . . . . . . 8  |-  ( X  e.  RR  ->  (
( A  e.  RR  /\  C  e.  RR )  ->  ( A  <_  X 
<->  ( A  +  C
)  <_  ( X  +  C ) ) ) )
1110com12 27 . . . . . . 7  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( X  e.  RR  ->  ( A  <_  X  <->  ( A  +  C )  <_  ( X  +  C ) ) ) )
12113adant2 974 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( X  e.  RR  ->  ( A  <_  X  <->  ( A  +  C )  <_  ( X  +  C )
) ) )
1312imp 418 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  X  e.  RR )  ->  ( A  <_  X 
<->  ( A  +  C
)  <_  ( X  +  C ) ) )
14 ltadd1 9257 . . . . . . . . 9  |-  ( ( X  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( X  <  B  <->  ( X  +  C )  <  ( B  +  C )
) )
15143expib 1154 . . . . . . . 8  |-  ( X  e.  RR  ->  (
( B  e.  RR  /\  C  e.  RR )  ->  ( X  < 
B  <->  ( X  +  C )  <  ( B  +  C )
) ) )
1615com12 27 . . . . . . 7  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( X  e.  RR  ->  ( X  <  B  <->  ( X  +  C )  <  ( B  +  C ) ) ) )
17163adant1 973 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( X  e.  RR  ->  ( X  <  B  <->  ( X  +  C )  <  ( B  +  C )
) ) )
1817imp 418 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  X  e.  RR )  ->  ( X  < 
B  <->  ( X  +  C )  <  ( B  +  C )
) )
1913, 18anbi12d 691 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  X  e.  RR )  ->  ( ( A  <_  X  /\  X  <  B )  <->  ( ( A  +  C )  <_  ( X  +  C
)  /\  ( X  +  C )  <  ( B  +  C )
) ) )
2019pm5.32da 622 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( X  e.  RR  /\  ( A  <_  X  /\  X  <  B ) )  <->  ( X  e.  RR  /\  ( ( A  +  C )  <_  ( X  +  C )  /\  ( X  +  C )  <  ( B  +  C
) ) ) ) )
21 readdcl 8836 . . . . . . . 8  |-  ( ( X  e.  RR  /\  C  e.  RR )  ->  ( X  +  C
)  e.  RR )
2221expcom 424 . . . . . . 7  |-  ( C  e.  RR  ->  ( X  e.  RR  ->  ( X  +  C )  e.  RR ) )
2322anim1d 547 . . . . . 6  |-  ( C  e.  RR  ->  (
( X  e.  RR  /\  ( ( A  +  C )  <_  ( X  +  C )  /\  ( X  +  C
)  <  ( B  +  C ) ) )  ->  ( ( X  +  C )  e.  RR  /\  ( ( A  +  C )  <_  ( X  +  C )  /\  ( X  +  C )  <  ( B  +  C
) ) ) ) )
24 3anass 938 . . . . . 6  |-  ( ( ( X  +  C
)  e.  RR  /\  ( A  +  C
)  <_  ( X  +  C )  /\  ( X  +  C )  <  ( B  +  C
) )  <->  ( ( X  +  C )  e.  RR  /\  ( ( A  +  C )  <_  ( X  +  C )  /\  ( X  +  C )  <  ( B  +  C
) ) ) )
2523, 24syl6ibr 218 . . . . 5  |-  ( C  e.  RR  ->  (
( X  e.  RR  /\  ( ( A  +  C )  <_  ( X  +  C )  /\  ( X  +  C
)  <  ( B  +  C ) ) )  ->  ( ( X  +  C )  e.  RR  /\  ( A  +  C )  <_ 
( X  +  C
)  /\  ( X  +  C )  <  ( B  +  C )
) ) )
26253ad2ant3 978 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( X  e.  RR  /\  ( ( A  +  C )  <_  ( X  +  C )  /\  ( X  +  C
)  <  ( B  +  C ) ) )  ->  ( ( X  +  C )  e.  RR  /\  ( A  +  C )  <_ 
( X  +  C
)  /\  ( X  +  C )  <  ( B  +  C )
) ) )
27 readdcl 8836 . . . . . 6  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  +  C
)  e.  RR )
28273adant2 974 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  +  C )  e.  RR )
29 readdcl 8836 . . . . . 6  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C
)  e.  RR )
30293adant1 973 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C )  e.  RR )
31 rexr 8893 . . . . . . 7  |-  ( ( B  +  C )  e.  RR  ->  ( B  +  C )  e.  RR* )
32 elico2 10730 . . . . . . 7  |-  ( ( ( A  +  C
)  e.  RR  /\  ( B  +  C
)  e.  RR* )  ->  ( ( X  +  C )  e.  ( ( A  +  C
) [,) ( B  +  C ) )  <-> 
( ( X  +  C )  e.  RR  /\  ( A  +  C
)  <_  ( X  +  C )  /\  ( X  +  C )  <  ( B  +  C
) ) ) )
3331, 32sylan2 460 . . . . . 6  |-  ( ( ( A  +  C
)  e.  RR  /\  ( B  +  C
)  e.  RR )  ->  ( ( X  +  C )  e.  ( ( A  +  C ) [,) ( B  +  C )
)  <->  ( ( X  +  C )  e.  RR  /\  ( A  +  C )  <_ 
( X  +  C
)  /\  ( X  +  C )  <  ( B  +  C )
) ) )
3433biimprd 214 . . . . 5  |-  ( ( ( A  +  C
)  e.  RR  /\  ( B  +  C
)  e.  RR )  ->  ( ( ( X  +  C )  e.  RR  /\  ( A  +  C )  <_  ( X  +  C
)  /\  ( X  +  C )  <  ( B  +  C )
)  ->  ( X  +  C )  e.  ( ( A  +  C
) [,) ( B  +  C ) ) ) )
3528, 30, 34syl2anc 642 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( ( X  +  C )  e.  RR  /\  ( A  +  C
)  <_  ( X  +  C )  /\  ( X  +  C )  <  ( B  +  C
) )  ->  ( X  +  C )  e.  ( ( A  +  C ) [,) ( B  +  C )
) ) )
3626, 35syld 40 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( X  e.  RR  /\  ( ( A  +  C )  <_  ( X  +  C )  /\  ( X  +  C
)  <  ( B  +  C ) ) )  ->  ( X  +  C )  e.  ( ( A  +  C
) [,) ( B  +  C ) ) ) )
3720, 36sylbid 206 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( X  e.  RR  /\  ( A  <_  X  /\  X  <  B ) )  ->  ( X  +  C )  e.  ( ( A  +  C
) [,) ( B  +  C ) ) ) )
387, 37syld 40 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( X  e.  ( A [,) B )  ->  ( X  +  C )  e.  ( ( A  +  C ) [,) ( B  +  C )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    e. wcel 1696   class class class wbr 4039  (class class class)co 5874   RRcr 8752    + caddc 8756   RR*cxr 8882    < clt 8883    <_ cle 8884   [,)cico 10674
This theorem is referenced by:  icoshftf1o  10775
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-ico 10678
  Copyright terms: Public domain W3C validator