MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icoval Unicode version

Theorem icoval 10918
Description: Value of the closed-below, open-above interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
icoval  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A [,) B )  =  { x  e.  RR*  |  ( A  <_  x  /\  x  <  B ) } )
Distinct variable groups:    x, A    x, B

Proof of Theorem icoval
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ico 10886 . 2  |-  [,)  =  ( y  e.  RR* ,  z  e.  RR*  |->  { x  e.  RR*  |  ( y  <_  x  /\  x  <  z ) } )
21ixxval 10888 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A [,) B )  =  { x  e.  RR*  |  ( A  <_  x  /\  x  <  B ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   {crab 2678   class class class wbr 4180  (class class class)co 6048   RR*cxr 9083    < clt 9084    <_ cle 9085   [,)cico 10882
This theorem is referenced by:  ico0  10926  orvcgteel  24686
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pr 4371  ax-un 4668  ax-cnex 9010  ax-resscn 9011
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-rab 2683  df-v 2926  df-sbc 3130  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-br 4181  df-opab 4235  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-iota 5385  df-fun 5423  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-xr 9088  df-ico 10886
  Copyright terms: Public domain W3C validator