MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idaf Unicode version

Theorem idaf 13897
Description: The identity arrow function is a function from objects to arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
idafval.i  |-  I  =  (Ida
`  C )
idafval.b  |-  B  =  ( Base `  C
)
idafval.c  |-  ( ph  ->  C  e.  Cat )
idaf.a  |-  A  =  (Nat `  C )
Assertion
Ref Expression
idaf  |-  ( ph  ->  I : B --> A )

Proof of Theorem idaf
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 otex 4240 . . 3  |-  <. x ,  x ,  ( ( Id `  C ) `
 x ) >.  e.  _V
21a1i 10 . 2  |-  ( (
ph  /\  x  e.  B )  ->  <. x ,  x ,  ( ( Id `  C ) `
 x ) >.  e.  _V )
3 idafval.i . . 3  |-  I  =  (Ida
`  C )
4 idafval.b . . 3  |-  B  =  ( Base `  C
)
5 idafval.c . . 3  |-  ( ph  ->  C  e.  Cat )
6 eqid 2285 . . 3  |-  ( Id
`  C )  =  ( Id `  C
)
73, 4, 5, 6idafval 13891 . 2  |-  ( ph  ->  I  =  ( x  e.  B  |->  <. x ,  x ,  ( ( Id `  C ) `
 x ) >.
) )
8 idaf.a . . . 4  |-  A  =  (Nat `  C )
9 eqid 2285 . . . 4  |-  (Homa `  C
)  =  (Homa `  C
)
108, 9homarw 13880 . . 3  |-  ( x (Homa
`  C ) x )  C_  A
115adantr 451 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  Cat )
12 simpr 447 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  B )
133, 4, 11, 12, 9idahom 13894 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (
I `  x )  e.  ( x (Homa `  C
) x ) )
1410, 13sseldi 3180 . 2  |-  ( (
ph  /\  x  e.  B )  ->  (
I `  x )  e.  A )
152, 7, 14fmpt2d 5690 1  |-  ( ph  ->  I : B --> A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1625    e. wcel 1686   _Vcvv 2790   <.cotp 3646   -->wf 5253   ` cfv 5257  (class class class)co 5860   Basecbs 13150   Catccat 13568   Idccid 13569  Natcarw 13856  Homachoma 13857  Idacida 13887
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-ot 3652  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-riota 6306  df-cat 13572  df-cid 13573  df-homa 13860  df-arw 13861  df-ida 13889
  Copyright terms: Public domain W3C validator