Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idcvvidc Unicode version

Theorem idcvvidc 25942
Description: Functors preserve codomains. JFM CAT1 th. 98. (Contributed by FL, 5-May-2008.)
Hypotheses
Ref Expression
idcvvidc.1  |-  M1  =  dom  ( dom_ `  T
)
idcvvidc.2  |-  C1  =  ( cod_ `  T )
idcvvidc.3  |-  I1  =  ( id_ `  T )
idcvvidc.4  |-  I 2  =  ( id_ `  U
)
idcvvidc.5  |-  C 2  =  ( cod_ `  U
)
Assertion
Ref Expression
idcvvidc  |-  ( ( T  e.  Cat OLD  /\  U  e.  Cat OLD  )  ->  ( F  e.  ( Func OLD `  <. T ,  U >. )  ->  A. m  e.  M1  ( F `  ( I1 `  ( C1 `  m
) ) )  =  ( I 2 `  ( C 2 `  ( F `  m )
) ) ) )
Distinct variable groups:    m, F    m,
M1    T, m    U, m
Allowed substitution hints:    I1( m)    C1( m)    I 2( m)    C 2( m)

Proof of Theorem idcvvidc
Dummy variables  a 
b  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2296 . . . . . 6  |-  dom  ( id_ `  T )  =  dom  ( id_ `  T
)
2 idcvvidc.1 . . . . . 6  |-  M1  =  dom  ( dom_ `  T
)
3 eqid 2296 . . . . . 6  |-  ( dom_ `  T )  =  (
dom_ `  T )
4 idcvvidc.2 . . . . . 6  |-  C1  =  ( cod_ `  T )
5 idcvvidc.3 . . . . . 6  |-  I1  =  ( id_ `  T )
6 eqid 2296 . . . . . 6  |-  ( o_
`  T )  =  ( o_ `  T
)
7 eqid 2296 . . . . . 6  |-  dom  ( id_ `  U )  =  dom  ( id_ `  U
)
8 eqid 2296 . . . . . 6  |-  dom  ( dom_ `  U )  =  dom  ( dom_ `  U
)
9 eqid 2296 . . . . . 6  |-  ( dom_ `  U )  =  (
dom_ `  U )
10 idcvvidc.5 . . . . . 6  |-  C 2  =  ( cod_ `  U
)
11 idcvvidc.4 . . . . . 6  |-  I 2  =  ( id_ `  U
)
12 eqid 2296 . . . . . 6  |-  ( o_
`  U )  =  ( o_ `  U
)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12isfunb 25938 . . . . 5  |-  ( ( T  e.  Cat OLD  /\  U  e.  Cat OLD  )  ->  ( F  e.  ( Func OLD `  <. T ,  U >. )  <->  ( F : M1 --> dom  ( dom_ `  U )  /\  ( A. a  e.  dom  ( id_ `  T ) E. b  e.  dom  ( id_ `  U ) ( F `  ( I1 `  a ) )  =  ( I 2 `  b )  /\  ( A. m  e.  M1  ( F `  ( I1 `  (
( dom_ `  T ) `  m ) ) )  =  ( I 2 `  ( ( dom_ `  U
) `  ( F `  m ) ) )  /\  A. m  e.  M1  ( F `  ( I1 `  ( C1 `  m
) ) )  =  ( I 2 `  ( C 2 `  ( F `  m )
) ) )  /\  A. m  e.  M1  A. n  e.  M1  ( ( C1 `  n )  =  ( ( dom_ `  T
) `  m )  ->  ( F `  (
m ( o_ `  T ) n ) )  =  ( ( F `  m ) ( o_ `  U
) ( F `  n ) ) ) ) ) ) )
1413simplbda 607 . . . 4  |-  ( ( ( T  e.  Cat OLD 
/\  U  e.  Cat OLD  )  /\  F  e.  ( Func OLD `  <. T ,  U >. )
)  ->  ( A. a  e.  dom  ( id_ `  T ) E. b  e.  dom  ( id_ `  U
) ( F `  ( I1 `  a ) )  =  ( I 2 `  b )  /\  ( A. m  e.  M1  ( F `  ( I1 `  ( (
dom_ `  T ) `  m ) ) )  =  ( I 2 `  ( ( dom_ `  U
) `  ( F `  m ) ) )  /\  A. m  e.  M1  ( F `  ( I1 `  ( C1 `  m
) ) )  =  ( I 2 `  ( C 2 `  ( F `  m )
) ) )  /\  A. m  e.  M1  A. n  e.  M1  ( ( C1 `  n )  =  ( ( dom_ `  T
) `  m )  ->  ( F `  (
m ( o_ `  T ) n ) )  =  ( ( F `  m ) ( o_ `  U
) ( F `  n ) ) ) ) )
1514simp2d 968 . . 3  |-  ( ( ( T  e.  Cat OLD 
/\  U  e.  Cat OLD  )  /\  F  e.  ( Func OLD `  <. T ,  U >. )
)  ->  ( A. m  e.  M1  ( F `
 ( I1 `  (
( dom_ `  T ) `  m ) ) )  =  ( I 2 `  ( ( dom_ `  U
) `  ( F `  m ) ) )  /\  A. m  e.  M1  ( F `  ( I1 `  ( C1 `  m
) ) )  =  ( I 2 `  ( C 2 `  ( F `  m )
) ) ) )
1615simprd 449 . 2  |-  ( ( ( T  e.  Cat OLD 
/\  U  e.  Cat OLD  )  /\  F  e.  ( Func OLD `  <. T ,  U >. )
)  ->  A. m  e.  M1  ( F `  ( I1 `  ( C1 `  m ) ) )  =  ( I 2 `  ( C 2 `  ( F `  m ) ) ) )
1716ex 423 1  |-  ( ( T  e.  Cat OLD  /\  U  e.  Cat OLD  )  ->  ( F  e.  ( Func OLD `  <. T ,  U >. )  ->  A. m  e.  M1  ( F `  ( I1 `  ( C1 `  m
) ) )  =  ( I 2 `  ( C 2 `  ( F `  m )
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   <.cop 3656   dom cdm 4705   -->wf 5267   ` cfv 5271  (class class class)co 5874   dom_cdom_ 25815   cod_ccod_ 25816   id_cid_ 25817   o_co_ 25818    Cat
OLD ccatOLD 25855   Func
OLDcfuncOLD 25934
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-map 6790  df-funcOLD 25936
  Copyright terms: Public domain W3C validator