MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idghm Unicode version

Theorem idghm 14714
Description: The identity homomorphism on a group. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypothesis
Ref Expression
idghm.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
idghm  |-  ( G  e.  Grp  ->  (  _I  |`  B )  e.  ( G  GrpHom  G ) )

Proof of Theorem idghm
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . 3  |-  ( G  e.  Grp  ->  G  e.  Grp )
21ancli 534 . 2  |-  ( G  e.  Grp  ->  ( G  e.  Grp  /\  G  e.  Grp ) )
3 idghm.b . . . . . . . 8  |-  B  =  ( Base `  G
)
4 eqid 2296 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
53, 4grpcl 14511 . . . . . . 7  |-  ( ( G  e.  Grp  /\  a  e.  B  /\  b  e.  B )  ->  ( a ( +g  `  G ) b )  e.  B )
653expb 1152 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
a ( +g  `  G
) b )  e.  B )
7 fvresi 5727 . . . . . 6  |-  ( ( a ( +g  `  G
) b )  e.  B  ->  ( (  _I  |`  B ) `  ( a ( +g  `  G ) b ) )  =  ( a ( +g  `  G
) b ) )
86, 7syl 15 . . . . 5  |-  ( ( G  e.  Grp  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
(  _I  |`  B ) `
 ( a ( +g  `  G ) b ) )  =  ( a ( +g  `  G ) b ) )
9 fvresi 5727 . . . . . . 7  |-  ( a  e.  B  ->  (
(  _I  |`  B ) `
 a )  =  a )
10 fvresi 5727 . . . . . . 7  |-  ( b  e.  B  ->  (
(  _I  |`  B ) `
 b )  =  b )
119, 10oveqan12d 5893 . . . . . 6  |-  ( ( a  e.  B  /\  b  e.  B )  ->  ( ( (  _I  |`  B ) `  a
) ( +g  `  G
) ( (  _I  |`  B ) `  b
) )  =  ( a ( +g  `  G
) b ) )
1211adantl 452 . . . . 5  |-  ( ( G  e.  Grp  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
( (  _I  |`  B ) `
 a ) ( +g  `  G ) ( (  _I  |`  B ) `
 b ) )  =  ( a ( +g  `  G ) b ) )
138, 12eqtr4d 2331 . . . 4  |-  ( ( G  e.  Grp  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
(  _I  |`  B ) `
 ( a ( +g  `  G ) b ) )  =  ( ( (  _I  |`  B ) `  a
) ( +g  `  G
) ( (  _I  |`  B ) `  b
) ) )
1413ralrimivva 2648 . . 3  |-  ( G  e.  Grp  ->  A. a  e.  B  A. b  e.  B  ( (  _I  |`  B ) `  ( a ( +g  `  G ) b ) )  =  ( ( (  _I  |`  B ) `
 a ) ( +g  `  G ) ( (  _I  |`  B ) `
 b ) ) )
15 f1oi 5527 . . . 4  |-  (  _I  |`  B ) : B -1-1-onto-> B
16 f1of 5488 . . . 4  |-  ( (  _I  |`  B ) : B -1-1-onto-> B  ->  (  _I  |`  B ) : B --> B )
1715, 16ax-mp 8 . . 3  |-  (  _I  |`  B ) : B --> B
1814, 17jctil 523 . 2  |-  ( G  e.  Grp  ->  (
(  _I  |`  B ) : B --> B  /\  A. a  e.  B  A. b  e.  B  (
(  _I  |`  B ) `
 ( a ( +g  `  G ) b ) )  =  ( ( (  _I  |`  B ) `  a
) ( +g  `  G
) ( (  _I  |`  B ) `  b
) ) ) )
193, 3, 4, 4isghm 14699 . 2  |-  ( (  _I  |`  B )  e.  ( G  GrpHom  G )  <-> 
( ( G  e. 
Grp  /\  G  e.  Grp )  /\  (
(  _I  |`  B ) : B --> B  /\  A. a  e.  B  A. b  e.  B  (
(  _I  |`  B ) `
 ( a ( +g  `  G ) b ) )  =  ( ( (  _I  |`  B ) `  a
) ( +g  `  G
) ( (  _I  |`  B ) `  b
) ) ) ) )
202, 18, 19sylanbrc 645 1  |-  ( G  e.  Grp  ->  (  _I  |`  B )  e.  ( G  GrpHom  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556    _I cid 4320    |` cres 4707   -->wf 5267   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5874   Basecbs 13164   +g cplusg 13224   Grpcgrp 14378    GrpHom cghm 14696
This theorem is referenced by:  gicref  14751  symgga  14802  0frgp  15104  idlmhm  15814  frgpcyg  16543  nmoid  18267  idnghm  18268
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-mnd 14383  df-grp 14505  df-ghm 14697
  Copyright terms: Public domain W3C validator