MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idghm Unicode version

Theorem idghm 14950
Description: The identity homomorphism on a group. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypothesis
Ref Expression
idghm.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
idghm  |-  ( G  e.  Grp  ->  (  _I  |`  B )  e.  ( G  GrpHom  G ) )

Proof of Theorem idghm
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 20 . . 3  |-  ( G  e.  Grp  ->  G  e.  Grp )
21ancli 535 . 2  |-  ( G  e.  Grp  ->  ( G  e.  Grp  /\  G  e.  Grp ) )
3 idghm.b . . . . . . . 8  |-  B  =  ( Base `  G
)
4 eqid 2389 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
53, 4grpcl 14747 . . . . . . 7  |-  ( ( G  e.  Grp  /\  a  e.  B  /\  b  e.  B )  ->  ( a ( +g  `  G ) b )  e.  B )
653expb 1154 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
a ( +g  `  G
) b )  e.  B )
7 fvresi 5865 . . . . . 6  |-  ( ( a ( +g  `  G
) b )  e.  B  ->  ( (  _I  |`  B ) `  ( a ( +g  `  G ) b ) )  =  ( a ( +g  `  G
) b ) )
86, 7syl 16 . . . . 5  |-  ( ( G  e.  Grp  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
(  _I  |`  B ) `
 ( a ( +g  `  G ) b ) )  =  ( a ( +g  `  G ) b ) )
9 fvresi 5865 . . . . . . 7  |-  ( a  e.  B  ->  (
(  _I  |`  B ) `
 a )  =  a )
10 fvresi 5865 . . . . . . 7  |-  ( b  e.  B  ->  (
(  _I  |`  B ) `
 b )  =  b )
119, 10oveqan12d 6041 . . . . . 6  |-  ( ( a  e.  B  /\  b  e.  B )  ->  ( ( (  _I  |`  B ) `  a
) ( +g  `  G
) ( (  _I  |`  B ) `  b
) )  =  ( a ( +g  `  G
) b ) )
1211adantl 453 . . . . 5  |-  ( ( G  e.  Grp  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
( (  _I  |`  B ) `
 a ) ( +g  `  G ) ( (  _I  |`  B ) `
 b ) )  =  ( a ( +g  `  G ) b ) )
138, 12eqtr4d 2424 . . . 4  |-  ( ( G  e.  Grp  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
(  _I  |`  B ) `
 ( a ( +g  `  G ) b ) )  =  ( ( (  _I  |`  B ) `  a
) ( +g  `  G
) ( (  _I  |`  B ) `  b
) ) )
1413ralrimivva 2743 . . 3  |-  ( G  e.  Grp  ->  A. a  e.  B  A. b  e.  B  ( (  _I  |`  B ) `  ( a ( +g  `  G ) b ) )  =  ( ( (  _I  |`  B ) `
 a ) ( +g  `  G ) ( (  _I  |`  B ) `
 b ) ) )
15 f1oi 5655 . . . 4  |-  (  _I  |`  B ) : B -1-1-onto-> B
16 f1of 5616 . . . 4  |-  ( (  _I  |`  B ) : B -1-1-onto-> B  ->  (  _I  |`  B ) : B --> B )
1715, 16ax-mp 8 . . 3  |-  (  _I  |`  B ) : B --> B
1814, 17jctil 524 . 2  |-  ( G  e.  Grp  ->  (
(  _I  |`  B ) : B --> B  /\  A. a  e.  B  A. b  e.  B  (
(  _I  |`  B ) `
 ( a ( +g  `  G ) b ) )  =  ( ( (  _I  |`  B ) `  a
) ( +g  `  G
) ( (  _I  |`  B ) `  b
) ) ) )
193, 3, 4, 4isghm 14935 . 2  |-  ( (  _I  |`  B )  e.  ( G  GrpHom  G )  <-> 
( ( G  e. 
Grp  /\  G  e.  Grp )  /\  (
(  _I  |`  B ) : B --> B  /\  A. a  e.  B  A. b  e.  B  (
(  _I  |`  B ) `
 ( a ( +g  `  G ) b ) )  =  ( ( (  _I  |`  B ) `  a
) ( +g  `  G
) ( (  _I  |`  B ) `  b
) ) ) ) )
202, 18, 19sylanbrc 646 1  |-  ( G  e.  Grp  ->  (  _I  |`  B )  e.  ( G  GrpHom  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2651    _I cid 4436    |` cres 4822   -->wf 5392   -1-1-onto->wf1o 5395   ` cfv 5396  (class class class)co 6022   Basecbs 13398   +g cplusg 13458   Grpcgrp 14614    GrpHom cghm 14932
This theorem is referenced by:  gicref  14987  symgga  15038  0frgp  15340  idlmhm  16046  frgpcyg  16779  nmoid  18649  idnghm  18650
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-reu 2658  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-mnd 14619  df-grp 14741  df-ghm 14933
  Copyright terms: Public domain W3C validator