MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idi Structured version   Unicode version

Theorem idi 2
Description: Inference form of id 21. This inference rule, which requires no axioms for its proof, is useful as a copy-paste mechanism during proof development in mmj2. It is normally not referenced in the final version of a proof, since it is always redundant and can be removed using the 'minimize *' command in the metamath program's Proof Assistant. (Contributed by Alan Sare, 31-Dec-2011.)
Hypothesis
Ref Expression
idi.1  |-  ph
Assertion
Ref Expression
idi  |-  ph

Proof of Theorem idi
StepHypRef Expression
1 idi.1 1  |-  ph
Colors of variables: wff set class
This theorem is referenced by:  suctr  4667  onfrALTlem2  28694  a9e2nd  28707  e233  28939  trsspwALT2  28994  sspwtrALT  28997  sstrALT2  29009  suctrALT3  29098  sspwimpALT  29099  a9e2ndALT  29104  a9e2ndeqALT  29105  isosctrlem1ALT  29108  iunconlem2  29109  sineq0ALT  29111
  Copyright terms: Public domain W3C validator