Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlcl Structured version   Unicode version

Theorem idlcl 26627
Description: An element of an ideal is an element of the ring. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
idlss.1  |-  G  =  ( 1st `  R
)
idlss.2  |-  X  =  ran  G
Assertion
Ref Expression
idlcl  |-  ( ( ( R  e.  RingOps  /\  I  e.  ( Idl `  R ) )  /\  A  e.  I )  ->  A  e.  X )

Proof of Theorem idlcl
StepHypRef Expression
1 idlss.1 . . 3  |-  G  =  ( 1st `  R
)
2 idlss.2 . . 3  |-  X  =  ran  G
31, 2idlss 26626 . 2  |-  ( ( R  e.  RingOps  /\  I  e.  ( Idl `  R
) )  ->  I  C_  X )
43sselda 3348 1  |-  ( ( ( R  e.  RingOps  /\  I  e.  ( Idl `  R ) )  /\  A  e.  I )  ->  A  e.  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   ran crn 4879   ` cfv 5454   1stc1st 6347   RingOpscrngo 21963   Idlcidl 26617
This theorem is referenced by:  idlsubcl  26633
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-iota 5418  df-fun 5456  df-fv 5462  df-ov 6084  df-idl 26620
  Copyright terms: Public domain W3C validator