Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idltrn Structured version   Unicode version

Theorem idltrn 30884
 Description: The identity function is a lattice translation. Remark below Lemma B in [Crawley] p. 112. (Contributed by NM, 18-May-2012.)
Hypotheses
Ref Expression
idltrn.b
idltrn.h
idltrn.t
Assertion
Ref Expression
idltrn

Proof of Theorem idltrn
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idltrn.b . . 3
2 idltrn.h . . 3
3 eqid 2435 . . 3
41, 2, 3idldil 30848 . 2
5 simpll 731 . . . . . 6
6 simplrr 738 . . . . . 6
7 simprr 734 . . . . . 6
8 eqid 2435 . . . . . . 7
9 eqid 2435 . . . . . . 7
10 eqid 2435 . . . . . . 7
11 eqid 2435 . . . . . . 7
128, 9, 10, 11, 2lhpmat 30764 . . . . . 6
135, 6, 7, 12syl12anc 1182 . . . . 5
141, 11atbase 30024 . . . . . . . . 9
15 fvresi 5916 . . . . . . . . 9
166, 14, 153syl 19 . . . . . . . 8
1716oveq2d 6089 . . . . . . 7
18 simplll 735 . . . . . . . 8
19 eqid 2435 . . . . . . . . 9
2019, 11hlatjidm 30103 . . . . . . . 8
2118, 6, 20syl2anc 643 . . . . . . 7
2217, 21eqtrd 2467 . . . . . 6
2322oveq1d 6088 . . . . 5
24 simplrl 737 . . . . . . . . . 10
251, 11atbase 30024 . . . . . . . . . 10
26 fvresi 5916 . . . . . . . . . 10
2724, 25, 263syl 19 . . . . . . . . 9
2827oveq2d 6089 . . . . . . . 8
2919, 11hlatjidm 30103 . . . . . . . . 9
3018, 24, 29syl2anc 643 . . . . . . . 8
3128, 30eqtrd 2467 . . . . . . 7
3231oveq1d 6088 . . . . . 6
33 simprl 733 . . . . . . 7
348, 9, 10, 11, 2lhpmat 30764 . . . . . . 7
355, 24, 33, 34syl12anc 1182 . . . . . 6
3632, 35eqtrd 2467 . . . . 5
3713, 23, 363eqtr4rd 2478 . . . 4
3837ex 424 . . 3
3938ralrimivva 2790 . 2
40 idltrn.t . . 3
418, 19, 9, 11, 2, 3, 40isltrn 30853 . 2
424, 39, 41mpbir2and 889 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 359   wceq 1652   wcel 1725  wral 2697   class class class wbr 4204   cid 4485   cres 4872  cfv 5446  (class class class)co 6073  cbs 13461  cple 13528  cjn 14393  cmee 14394  cp0 14458  catm 29998  chlt 30085  clh 30718  cldil 30834  cltrn 30835 This theorem is referenced by:  trlid0  30910  tgrpgrplem  31483  tendoid  31507  tendo0cl  31524  cdlemkid2  31658  cdlemkid3N  31667  cdlemkid4  31668  cdlemkid5  31669  cdlemk35s-id  31672  dva0g  31762  dian0  31774  dia0  31787  dvhgrp  31842  dvh0g  31846  dvheveccl  31847  dvhopN  31851  dihmeetlem4preN  32041 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-map 7012  df-poset 14395  df-plt 14407  df-lub 14423  df-glb 14424  df-join 14425  df-meet 14426  df-p0 14460  df-lat 14467  df-covers 30001  df-ats 30002  df-atl 30033  df-cvlat 30057  df-hlat 30086  df-lhyp 30722  df-laut 30723  df-ldil 30838  df-ltrn 30839
 Copyright terms: Public domain W3C validator