Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idltrn Unicode version

Theorem idltrn 30339
Description: The identity function is a lattice translation. Remark below Lemma B in [Crawley] p. 112. (Contributed by NM, 18-May-2012.)
Hypotheses
Ref Expression
idltrn.b  |-  B  =  ( Base `  K
)
idltrn.h  |-  H  =  ( LHyp `  K
)
idltrn.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
idltrn  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  B )  e.  T )

Proof of Theorem idltrn
Dummy variables  q  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idltrn.b . . 3  |-  B  =  ( Base `  K
)
2 idltrn.h . . 3  |-  H  =  ( LHyp `  K
)
3 eqid 2283 . . 3  |-  ( (
LDil `  K ) `  W )  =  ( ( LDil `  K
) `  W )
41, 2, 3idldil 30303 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  B )  e.  ( ( LDil `  K ) `  W
) )
5 simpll 730 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
6 simplrr 737 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  q  e.  ( Atoms `  K )
)
7 simprr 733 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  -.  q
( le `  K
) W )
8 eqid 2283 . . . . . . 7  |-  ( le
`  K )  =  ( le `  K
)
9 eqid 2283 . . . . . . 7  |-  ( meet `  K )  =  (
meet `  K )
10 eqid 2283 . . . . . . 7  |-  ( 0.
`  K )  =  ( 0. `  K
)
11 eqid 2283 . . . . . . 7  |-  ( Atoms `  K )  =  (
Atoms `  K )
128, 9, 10, 11, 2lhpmat 30219 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( q  e.  ( Atoms `  K )  /\  -.  q ( le
`  K ) W ) )  ->  (
q ( meet `  K
) W )  =  ( 0. `  K
) )
135, 6, 7, 12syl12anc 1180 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( q
( meet `  K ) W )  =  ( 0. `  K ) )
141, 11atbase 29479 . . . . . . . . 9  |-  ( q  e.  ( Atoms `  K
)  ->  q  e.  B )
15 fvresi 5711 . . . . . . . . 9  |-  ( q  e.  B  ->  (
(  _I  |`  B ) `
 q )  =  q )
166, 14, 153syl 18 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( (  _I  |`  B ) `  q )  =  q )
1716oveq2d 5874 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( q
( join `  K )
( (  _I  |`  B ) `
 q ) )  =  ( q (
join `  K )
q ) )
18 simplll 734 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  K  e.  HL )
19 eqid 2283 . . . . . . . . 9  |-  ( join `  K )  =  (
join `  K )
2019, 11hlatjidm 29558 . . . . . . . 8  |-  ( ( K  e.  HL  /\  q  e.  ( Atoms `  K ) )  -> 
( q ( join `  K ) q )  =  q )
2118, 6, 20syl2anc 642 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( q
( join `  K )
q )  =  q )
2217, 21eqtrd 2315 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( q
( join `  K )
( (  _I  |`  B ) `
 q ) )  =  q )
2322oveq1d 5873 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( (
q ( join `  K
) ( (  _I  |`  B ) `  q
) ) ( meet `  K ) W )  =  ( q (
meet `  K ) W ) )
24 simplrl 736 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  p  e.  ( Atoms `  K )
)
251, 11atbase 29479 . . . . . . . . . 10  |-  ( p  e.  ( Atoms `  K
)  ->  p  e.  B )
26 fvresi 5711 . . . . . . . . . 10  |-  ( p  e.  B  ->  (
(  _I  |`  B ) `
 p )  =  p )
2724, 25, 263syl 18 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( (  _I  |`  B ) `  p )  =  p )
2827oveq2d 5874 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( p
( join `  K )
( (  _I  |`  B ) `
 p ) )  =  ( p (
join `  K )
p ) )
2919, 11hlatjidm 29558 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  p  e.  ( Atoms `  K ) )  -> 
( p ( join `  K ) p )  =  p )
3018, 24, 29syl2anc 642 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( p
( join `  K )
p )  =  p )
3128, 30eqtrd 2315 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( p
( join `  K )
( (  _I  |`  B ) `
 p ) )  =  p )
3231oveq1d 5873 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( (
p ( join `  K
) ( (  _I  |`  B ) `  p
) ) ( meet `  K ) W )  =  ( p (
meet `  K ) W ) )
33 simprl 732 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  -.  p
( le `  K
) W )
348, 9, 10, 11, 2lhpmat 30219 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( p  e.  ( Atoms `  K )  /\  -.  p ( le
`  K ) W ) )  ->  (
p ( meet `  K
) W )  =  ( 0. `  K
) )
355, 24, 33, 34syl12anc 1180 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( p
( meet `  K ) W )  =  ( 0. `  K ) )
3632, 35eqtrd 2315 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( (
p ( join `  K
) ( (  _I  |`  B ) `  p
) ) ( meet `  K ) W )  =  ( 0. `  K ) )
3713, 23, 363eqtr4rd 2326 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( (
p ( join `  K
) ( (  _I  |`  B ) `  p
) ) ( meet `  K ) W )  =  ( ( q ( join `  K
) ( (  _I  |`  B ) `  q
) ) ( meet `  K ) W ) )
3837ex 423 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) ) )  ->  ( ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W )  ->  ( ( p ( join `  K
) ( (  _I  |`  B ) `  p
) ) ( meet `  K ) W )  =  ( ( q ( join `  K
) ( (  _I  |`  B ) `  q
) ) ( meet `  K ) W ) ) )
3938ralrimivva 2635 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  A. p  e.  (
Atoms `  K ) A. q  e.  ( Atoms `  K ) ( ( -.  p ( le
`  K ) W  /\  -.  q ( le `  K ) W )  ->  (
( p ( join `  K ) ( (  _I  |`  B ) `  p ) ) (
meet `  K ) W )  =  ( ( q ( join `  K ) ( (  _I  |`  B ) `  q ) ) (
meet `  K ) W ) ) )
40 idltrn.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
418, 19, 9, 11, 2, 3, 40isltrn 30308 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( (  _I  |`  B )  e.  T  <->  ( (  _I  |`  B )  e.  ( ( LDil `  K
) `  W )  /\  A. p  e.  (
Atoms `  K ) A. q  e.  ( Atoms `  K ) ( ( -.  p ( le
`  K ) W  /\  -.  q ( le `  K ) W )  ->  (
( p ( join `  K ) ( (  _I  |`  B ) `  p ) ) (
meet `  K ) W )  =  ( ( q ( join `  K ) ( (  _I  |`  B ) `  q ) ) (
meet `  K ) W ) ) ) ) )
424, 39, 41mpbir2and 888 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  B )  e.  T )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   class class class wbr 4023    _I cid 4304    |` cres 4691   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   joincjn 14078   meetcmee 14079   0.cp0 14143   Atomscatm 29453   HLchlt 29540   LHypclh 30173   LDilcldil 30289   LTrncltrn 30290
This theorem is referenced by:  trlid0  30365  tgrpgrplem  30938  tendoid  30962  tendo0cl  30979  cdlemkid2  31113  cdlemkid3N  31122  cdlemkid4  31123  cdlemkid5  31124  cdlemk35s-id  31127  dva0g  31217  dian0  31229  dia0  31242  dvhgrp  31297  dvh0g  31301  dvheveccl  31302  dvhopN  31306  dihmeetlem4preN  31496
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-map 6774  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-lat 14152  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-lhyp 30177  df-laut 30178  df-ldil 30293  df-ltrn 30294
  Copyright terms: Public domain W3C validator