Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idn2 Unicode version

Theorem idn2 28385
Description: Virtual deduction identity rule which is idd 21 with virtual deduction symbols. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
idn2  |-  (. ph ,. ps  ->.  ps ).

Proof of Theorem idn2
StepHypRef Expression
1 idd 21 . 2  |-  ( ph  ->  ( ps  ->  ps ) )
21dfvd2ir 28355 1  |-  (. ph ,. ps  ->.  ps ).
Colors of variables: wff set class
Syntax hints:   (.wvd2 28346
This theorem is referenced by:  trsspwALT  28592  sspwtr  28595  pwtrVD  28598  pwtrrVD  28600  snssiALTVD  28602  sstrALT2VD  28610  suctrALT2VD  28612  elex2VD  28614  elex22VD  28615  eqsbc3rVD  28616  tpid3gVD  28618  en3lplem1VD  28619  en3lplem2VD  28620  3ornot23VD  28623  orbi1rVD  28624  19.21a3con13vVD  28628  exbirVD  28629  exbiriVD  28630  rspsbc2VD  28631  tratrbVD  28637  syl5impVD  28639  ssralv2VD  28642  imbi12VD  28649  imbi13VD  28650  sbcim2gVD  28651  sbcbiVD  28652  truniALTVD  28654  trintALTVD  28656  onfrALTlem3VD  28663  onfrALTlem2VD  28665  onfrALTlem1VD  28666  relopabVD  28677  19.41rgVD  28678  hbimpgVD  28680  a9e2eqVD  28683  a9e2ndeqVD  28685  sb5ALTVD  28689  vk15.4jVD  28690  con3ALTVD  28692
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-vd2 28347
  Copyright terms: Public domain W3C validator