Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idomsubgmo Unicode version

Theorem idomsubgmo 27105
Description: The units of an integral domain have at most one subgroup of any single finite cardinality. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Revised by NM, 17-Jun-2017.)
Hypothesis
Ref Expression
idomsubgmo.g  |-  G  =  ( (mulGrp `  R
)s  (Unit `  R )
)
Assertion
Ref Expression
idomsubgmo  |-  ( ( R  e. IDomn  /\  N  e.  NN )  ->  E* y  e.  (SubGrp `  G
) ( # `  y
)  =  N )
Distinct variable groups:    y, G    y, N    y, R

Proof of Theorem idomsubgmo
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 5646 . . . . . . . . 9  |-  ( Base `  G )  e.  _V
21rabex 4267 . . . . . . . 8  |-  { z  e.  ( Base `  G
)  |  ( ( od `  G ) `
 z )  ||  N }  e.  _V
3 simp2l 982 . . . . . . . . . . 11  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  y  e.  (SubGrp `  G )
)
4 eqid 2366 . . . . . . . . . . . 12  |-  ( Base `  G )  =  (
Base `  G )
54subgss 14832 . . . . . . . . . . 11  |-  ( y  e.  (SubGrp `  G
)  ->  y  C_  ( Base `  G )
)
63, 5syl 15 . . . . . . . . . 10  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  y  C_  ( Base `  G
) )
7 simpl2l 1009 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G ) )  /\  ( ( # `  y
)  =  N  /\  ( # `  x )  =  N ) )  /\  z  e.  y )  ->  y  e.  (SubGrp `  G ) )
8 simp3l 984 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  ( # `
 y )  =  N )
9 simp1r 981 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  N  e.  NN )
109nnnn0d 10167 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  N  e.  NN0 )
118, 10eqeltrd 2440 . . . . . . . . . . . . . 14  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  ( # `
 y )  e. 
NN0 )
12 vex 2876 . . . . . . . . . . . . . . 15  |-  y  e. 
_V
13 hashclb 11528 . . . . . . . . . . . . . . 15  |-  ( y  e.  _V  ->  (
y  e.  Fin  <->  ( # `  y
)  e.  NN0 )
)
1412, 13ax-mp 8 . . . . . . . . . . . . . 14  |-  ( y  e.  Fin  <->  ( # `  y
)  e.  NN0 )
1511, 14sylibr 203 . . . . . . . . . . . . 13  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  y  e.  Fin )
1615adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G ) )  /\  ( ( # `  y
)  =  N  /\  ( # `  x )  =  N ) )  /\  z  e.  y )  ->  y  e.  Fin )
17 simpr 447 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G ) )  /\  ( ( # `  y
)  =  N  /\  ( # `  x )  =  N ) )  /\  z  e.  y )  ->  z  e.  y )
18 eqid 2366 . . . . . . . . . . . . 13  |-  ( od
`  G )  =  ( od `  G
)
1918odsubdvds 15092 . . . . . . . . . . . 12  |-  ( ( y  e.  (SubGrp `  G )  /\  y  e.  Fin  /\  z  e.  y )  ->  (
( od `  G
) `  z )  ||  ( # `  y
) )
207, 16, 17, 19syl3anc 1183 . . . . . . . . . . 11  |-  ( ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G ) )  /\  ( ( # `  y
)  =  N  /\  ( # `  x )  =  N ) )  /\  z  e.  y )  ->  ( ( od `  G ) `  z )  ||  ( # `
 y ) )
218adantr 451 . . . . . . . . . . 11  |-  ( ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G ) )  /\  ( ( # `  y
)  =  N  /\  ( # `  x )  =  N ) )  /\  z  e.  y )  ->  ( # `  y
)  =  N )
2220, 21breqtrd 4149 . . . . . . . . . 10  |-  ( ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G ) )  /\  ( ( # `  y
)  =  N  /\  ( # `  x )  =  N ) )  /\  z  e.  y )  ->  ( ( od `  G ) `  z )  ||  N
)
236, 22ssrabdv 3338 . . . . . . . . 9  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  y  C_ 
{ z  e.  (
Base `  G )  |  ( ( od
`  G ) `  z )  ||  N } )
24 simp2r 983 . . . . . . . . . . 11  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  x  e.  (SubGrp `  G )
)
254subgss 14832 . . . . . . . . . . 11  |-  ( x  e.  (SubGrp `  G
)  ->  x  C_  ( Base `  G ) )
2624, 25syl 15 . . . . . . . . . 10  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  x  C_  ( Base `  G
) )
27 simpl2r 1010 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G ) )  /\  ( ( # `  y
)  =  N  /\  ( # `  x )  =  N ) )  /\  z  e.  x
)  ->  x  e.  (SubGrp `  G ) )
28 simp3r 985 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  ( # `
 x )  =  N )
2928, 10eqeltrd 2440 . . . . . . . . . . . . . 14  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  ( # `
 x )  e. 
NN0 )
30 vex 2876 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
31 hashclb 11528 . . . . . . . . . . . . . . 15  |-  ( x  e.  _V  ->  (
x  e.  Fin  <->  ( # `  x
)  e.  NN0 )
)
3230, 31ax-mp 8 . . . . . . . . . . . . . 14  |-  ( x  e.  Fin  <->  ( # `  x
)  e.  NN0 )
3329, 32sylibr 203 . . . . . . . . . . . . 13  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  x  e.  Fin )
3433adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G ) )  /\  ( ( # `  y
)  =  N  /\  ( # `  x )  =  N ) )  /\  z  e.  x
)  ->  x  e.  Fin )
35 simpr 447 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G ) )  /\  ( ( # `  y
)  =  N  /\  ( # `  x )  =  N ) )  /\  z  e.  x
)  ->  z  e.  x )
3618odsubdvds 15092 . . . . . . . . . . . 12  |-  ( ( x  e.  (SubGrp `  G )  /\  x  e.  Fin  /\  z  e.  x )  ->  (
( od `  G
) `  z )  ||  ( # `  x
) )
3727, 34, 35, 36syl3anc 1183 . . . . . . . . . . 11  |-  ( ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G ) )  /\  ( ( # `  y
)  =  N  /\  ( # `  x )  =  N ) )  /\  z  e.  x
)  ->  ( ( od `  G ) `  z )  ||  ( # `
 x ) )
3828adantr 451 . . . . . . . . . . 11  |-  ( ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G ) )  /\  ( ( # `  y
)  =  N  /\  ( # `  x )  =  N ) )  /\  z  e.  x
)  ->  ( # `  x
)  =  N )
3937, 38breqtrd 4149 . . . . . . . . . 10  |-  ( ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G ) )  /\  ( ( # `  y
)  =  N  /\  ( # `  x )  =  N ) )  /\  z  e.  x
)  ->  ( ( od `  G ) `  z )  ||  N
)
4026, 39ssrabdv 3338 . . . . . . . . 9  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  x  C_ 
{ z  e.  (
Base `  G )  |  ( ( od
`  G ) `  z )  ||  N } )
4123, 40unssd 3439 . . . . . . . 8  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  (
y  u.  x ) 
C_  { z  e.  ( Base `  G
)  |  ( ( od `  G ) `
 z )  ||  N } )
42 ssdomg 7050 . . . . . . . 8  |-  ( { z  e.  ( Base `  G )  |  ( ( od `  G
) `  z )  ||  N }  e.  _V  ->  ( ( y  u.  x )  C_  { z  e.  ( Base `  G
)  |  ( ( od `  G ) `
 z )  ||  N }  ->  ( y  u.  x )  ~<_  { z  e.  ( Base `  G )  |  ( ( od `  G
) `  z )  ||  N } ) )
432, 41, 42mpsyl 59 . . . . . . 7  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  (
y  u.  x )  ~<_  { z  e.  (
Base `  G )  |  ( ( od
`  G ) `  z )  ||  N } )
44 idomsubgmo.g . . . . . . . . . . 11  |-  G  =  ( (mulGrp `  R
)s  (Unit `  R )
)
4544, 4, 18idomodle 27103 . . . . . . . . . 10  |-  ( ( R  e. IDomn  /\  N  e.  NN )  ->  ( # `
 { z  e.  ( Base `  G
)  |  ( ( od `  G ) `
 z )  ||  N } )  <_  N
)
46453ad2ant1 977 . . . . . . . . 9  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  ( # `
 { z  e.  ( Base `  G
)  |  ( ( od `  G ) `
 z )  ||  N } )  <_  N
)
4746, 8breqtrrd 4151 . . . . . . . 8  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  ( # `
 { z  e.  ( Base `  G
)  |  ( ( od `  G ) `
 z )  ||  N } )  <_  ( # `
 y ) )
482a1i 10 . . . . . . . . . 10  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  { z  e.  ( Base `  G
)  |  ( ( od `  G ) `
 z )  ||  N }  e.  _V )
49 hashbnd 11511 . . . . . . . . . 10  |-  ( ( { z  e.  (
Base `  G )  |  ( ( od
`  G ) `  z )  ||  N }  e.  _V  /\  ( # `
 y )  e. 
NN0  /\  ( # `  {
z  e.  ( Base `  G )  |  ( ( od `  G
) `  z )  ||  N } )  <_ 
( # `  y ) )  ->  { z  e.  ( Base `  G
)  |  ( ( od `  G ) `
 z )  ||  N }  e.  Fin )
5048, 11, 47, 49syl3anc 1183 . . . . . . . . 9  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  { z  e.  ( Base `  G
)  |  ( ( od `  G ) `
 z )  ||  N }  e.  Fin )
51 hashdom 11540 . . . . . . . . 9  |-  ( ( { z  e.  (
Base `  G )  |  ( ( od
`  G ) `  z )  ||  N }  e.  Fin  /\  y  e.  _V )  ->  (
( # `  { z  e.  ( Base `  G
)  |  ( ( od `  G ) `
 z )  ||  N } )  <_  ( # `
 y )  <->  { z  e.  ( Base `  G
)  |  ( ( od `  G ) `
 z )  ||  N }  ~<_  y )
)
5250, 12, 51sylancl 643 . . . . . . . 8  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  (
( # `  { z  e.  ( Base `  G
)  |  ( ( od `  G ) `
 z )  ||  N } )  <_  ( # `
 y )  <->  { z  e.  ( Base `  G
)  |  ( ( od `  G ) `
 z )  ||  N }  ~<_  y )
)
5347, 52mpbid 201 . . . . . . 7  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  { z  e.  ( Base `  G
)  |  ( ( od `  G ) `
 z )  ||  N }  ~<_  y )
54 domtr 7057 . . . . . . 7  |-  ( ( ( y  u.  x
)  ~<_  { z  e.  ( Base `  G
)  |  ( ( od `  G ) `
 z )  ||  N }  /\  { z  e.  ( Base `  G
)  |  ( ( od `  G ) `
 z )  ||  N }  ~<_  y )  ->  ( y  u.  x
)  ~<_  y )
5543, 53, 54syl2anc 642 . . . . . 6  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  (
y  u.  x )  ~<_  y )
5612, 30unex 4621 . . . . . . 7  |-  ( y  u.  x )  e. 
_V
57 ssun1 3426 . . . . . . 7  |-  y  C_  ( y  u.  x
)
58 ssdomg 7050 . . . . . . 7  |-  ( ( y  u.  x )  e.  _V  ->  (
y  C_  ( y  u.  x )  ->  y  ~<_  ( y  u.  x
) ) )
5956, 57, 58mp2 17 . . . . . 6  |-  y  ~<_  ( y  u.  x )
60 sbth 7124 . . . . . 6  |-  ( ( ( y  u.  x
)  ~<_  y  /\  y  ~<_  ( y  u.  x
) )  ->  (
y  u.  x ) 
~~  y )
6155, 59, 60sylancl 643 . . . . 5  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  (
y  u.  x ) 
~~  y )
628, 28eqtr4d 2401 . . . . . . 7  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  ( # `
 y )  =  ( # `  x
) )
63 hashen 11518 . . . . . . . 8  |-  ( ( y  e.  Fin  /\  x  e.  Fin )  ->  ( ( # `  y
)  =  ( # `  x )  <->  y  ~~  x ) )
6415, 33, 63syl2anc 642 . . . . . . 7  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  (
( # `  y )  =  ( # `  x
)  <->  y  ~~  x
) )
6562, 64mpbid 201 . . . . . 6  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  y  ~~  x )
66 fiuneneq 27104 . . . . . 6  |-  ( ( y  ~~  x  /\  y  e.  Fin )  ->  ( ( y  u.  x )  ~~  y  <->  y  =  x ) )
6765, 15, 66syl2anc 642 . . . . 5  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  (
( y  u.  x
)  ~~  y  <->  y  =  x ) )
6861, 67mpbid 201 . . . 4  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  y  =  x )
69683expia 1154 . . 3  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
) )  ->  (
( ( # `  y
)  =  N  /\  ( # `  x )  =  N )  -> 
y  =  x ) )
7069ralrimivva 2720 . 2  |-  ( ( R  e. IDomn  /\  N  e.  NN )  ->  A. y  e.  (SubGrp `  G ) A. x  e.  (SubGrp `  G ) ( ( ( # `  y
)  =  N  /\  ( # `  x )  =  N )  -> 
y  =  x ) )
71 fveq2 5632 . . . 4  |-  ( y  =  x  ->  ( # `
 y )  =  ( # `  x
) )
7271eqeq1d 2374 . . 3  |-  ( y  =  x  ->  (
( # `  y )  =  N  <->  ( # `  x
)  =  N ) )
7372rmo4 3044 . 2  |-  ( E* y  e.  (SubGrp `  G ) ( # `  y )  =  N  <->  A. y  e.  (SubGrp `  G ) A. x  e.  (SubGrp `  G )
( ( ( # `  y )  =  N  /\  ( # `  x
)  =  N )  ->  y  =  x ) )
7470, 73sylibr 203 1  |-  ( ( R  e. IDomn  /\  N  e.  NN )  ->  E* y  e.  (SubGrp `  G
) ( # `  y
)  =  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715   A.wral 2628   E*wrmo 2631   {crab 2632   _Vcvv 2873    u. cun 3236    C_ wss 3238   class class class wbr 4125   ` cfv 5358  (class class class)co 5981    ~~ cen 7003    ~<_ cdom 7004   Fincfn 7006    <_ cle 9015   NNcn 9893   NN0cn0 10114   #chash 11505    || cdivides 12739   Basecbs 13356   ↾s cress 13357  SubGrpcsubg 14825   odcod 15050  mulGrpcmgp 15535  Unitcui 15631  IDomncidom 16232
This theorem is referenced by:  proot1mul  27106
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-inf2 7489  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961  ax-pre-sup 8962  ax-addf 8963  ax-mulf 8964
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-iin 4010  df-disj 4096  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-se 4456  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-isom 5367  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-of 6205  df-ofr 6206  df-1st 6249  df-2nd 6250  df-tpos 6376  df-riota 6446  df-recs 6530  df-rdg 6565  df-1o 6621  df-2o 6622  df-oadd 6625  df-omul 6626  df-er 6802  df-ec 6804  df-qs 6808  df-map 6917  df-pm 6918  df-ixp 6961  df-en 7007  df-dom 7008  df-sdom 7009  df-fin 7010  df-sup 7341  df-oi 7372  df-card 7719  df-acn 7722  df-cda 7941  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-div 9571  df-nn 9894  df-2 9951  df-3 9952  df-4 9953  df-5 9954  df-6 9955  df-7 9956  df-8 9957  df-9 9958  df-10 9959  df-n0 10115  df-z 10176  df-dec 10276  df-uz 10382  df-rp 10506  df-fz 10936  df-fzo 11026  df-fl 11089  df-mod 11138  df-seq 11211  df-exp 11270  df-hash 11506  df-cj 11791  df-re 11792  df-im 11793  df-sqr 11927  df-abs 11928  df-clim 12169  df-sum 12367  df-dvds 12740  df-struct 13358  df-ndx 13359  df-slot 13360  df-base 13361  df-sets 13362  df-ress 13363  df-plusg 13429  df-mulr 13430  df-starv 13431  df-sca 13432  df-vsca 13433  df-tset 13435  df-ple 13436  df-ds 13438  df-unif 13439  df-hom 13440  df-cco 13441  df-prds 13558  df-pws 13560  df-0g 13614  df-gsum 13615  df-mre 13698  df-mrc 13699  df-acs 13701  df-mnd 14577  df-mhm 14625  df-submnd 14626  df-grp 14699  df-minusg 14700  df-sbg 14701  df-mulg 14702  df-subg 14828  df-eqg 14830  df-ghm 14891  df-cntz 15003  df-od 15054  df-cmn 15301  df-abl 15302  df-mgp 15536  df-rng 15550  df-cring 15551  df-ur 15552  df-oppr 15615  df-dvdsr 15633  df-unit 15634  df-invr 15664  df-rnghom 15706  df-subrg 15753  df-lmod 15839  df-lss 15900  df-lsp 15939  df-nzr 16220  df-rlreg 16234  df-domn 16235  df-idom 16236  df-assa 16263  df-asp 16264  df-ascl 16265  df-psr 16308  df-mvr 16309  df-mpl 16310  df-evls 16311  df-evl 16312  df-opsr 16316  df-psr1 16467  df-vr1 16468  df-ply1 16469  df-evl1 16471  df-coe1 16472  df-cnfld 16594  df-mdeg 19656  df-deg1 19657  df-mon1 19731  df-uc1p 19732  df-q1p 19733  df-r1p 19734
  Copyright terms: Public domain W3C validator