Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idomsubgmo Structured version   Unicode version

Theorem idomsubgmo 27505
Description: The units of an integral domain have at most one subgroup of any single finite cardinality. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Revised by NM, 17-Jun-2017.)
Hypothesis
Ref Expression
idomsubgmo.g  |-  G  =  ( (mulGrp `  R
)s  (Unit `  R )
)
Assertion
Ref Expression
idomsubgmo  |-  ( ( R  e. IDomn  /\  N  e.  NN )  ->  E* y  e.  (SubGrp `  G
) ( # `  y
)  =  N )
Distinct variable groups:    y, G    y, N    y, R

Proof of Theorem idomsubgmo
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 5745 . . . . . . . . 9  |-  ( Base `  G )  e.  _V
21rabex 4357 . . . . . . . 8  |-  { z  e.  ( Base `  G
)  |  ( ( od `  G ) `
 z )  ||  N }  e.  _V
3 simp2l 984 . . . . . . . . . . 11  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  y  e.  (SubGrp `  G )
)
4 eqid 2438 . . . . . . . . . . . 12  |-  ( Base `  G )  =  (
Base `  G )
54subgss 14950 . . . . . . . . . . 11  |-  ( y  e.  (SubGrp `  G
)  ->  y  C_  ( Base `  G )
)
63, 5syl 16 . . . . . . . . . 10  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  y  C_  ( Base `  G
) )
7 simpl2l 1011 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G ) )  /\  ( ( # `  y
)  =  N  /\  ( # `  x )  =  N ) )  /\  z  e.  y )  ->  y  e.  (SubGrp `  G ) )
8 simp3l 986 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  ( # `
 y )  =  N )
9 simp1r 983 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  N  e.  NN )
109nnnn0d 10279 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  N  e.  NN0 )
118, 10eqeltrd 2512 . . . . . . . . . . . . . 14  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  ( # `
 y )  e. 
NN0 )
12 vex 2961 . . . . . . . . . . . . . . 15  |-  y  e. 
_V
13 hashclb 11646 . . . . . . . . . . . . . . 15  |-  ( y  e.  _V  ->  (
y  e.  Fin  <->  ( # `  y
)  e.  NN0 )
)
1412, 13ax-mp 5 . . . . . . . . . . . . . 14  |-  ( y  e.  Fin  <->  ( # `  y
)  e.  NN0 )
1511, 14sylibr 205 . . . . . . . . . . . . 13  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  y  e.  Fin )
1615adantr 453 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G ) )  /\  ( ( # `  y
)  =  N  /\  ( # `  x )  =  N ) )  /\  z  e.  y )  ->  y  e.  Fin )
17 simpr 449 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G ) )  /\  ( ( # `  y
)  =  N  /\  ( # `  x )  =  N ) )  /\  z  e.  y )  ->  z  e.  y )
18 eqid 2438 . . . . . . . . . . . . 13  |-  ( od
`  G )  =  ( od `  G
)
1918odsubdvds 15210 . . . . . . . . . . . 12  |-  ( ( y  e.  (SubGrp `  G )  /\  y  e.  Fin  /\  z  e.  y )  ->  (
( od `  G
) `  z )  ||  ( # `  y
) )
207, 16, 17, 19syl3anc 1185 . . . . . . . . . . 11  |-  ( ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G ) )  /\  ( ( # `  y
)  =  N  /\  ( # `  x )  =  N ) )  /\  z  e.  y )  ->  ( ( od `  G ) `  z )  ||  ( # `
 y ) )
218adantr 453 . . . . . . . . . . 11  |-  ( ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G ) )  /\  ( ( # `  y
)  =  N  /\  ( # `  x )  =  N ) )  /\  z  e.  y )  ->  ( # `  y
)  =  N )
2220, 21breqtrd 4239 . . . . . . . . . 10  |-  ( ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G ) )  /\  ( ( # `  y
)  =  N  /\  ( # `  x )  =  N ) )  /\  z  e.  y )  ->  ( ( od `  G ) `  z )  ||  N
)
236, 22ssrabdv 3424 . . . . . . . . 9  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  y  C_ 
{ z  e.  (
Base `  G )  |  ( ( od
`  G ) `  z )  ||  N } )
24 simp2r 985 . . . . . . . . . . 11  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  x  e.  (SubGrp `  G )
)
254subgss 14950 . . . . . . . . . . 11  |-  ( x  e.  (SubGrp `  G
)  ->  x  C_  ( Base `  G ) )
2624, 25syl 16 . . . . . . . . . 10  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  x  C_  ( Base `  G
) )
27 simpl2r 1012 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G ) )  /\  ( ( # `  y
)  =  N  /\  ( # `  x )  =  N ) )  /\  z  e.  x
)  ->  x  e.  (SubGrp `  G ) )
28 simp3r 987 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  ( # `
 x )  =  N )
2928, 10eqeltrd 2512 . . . . . . . . . . . . . 14  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  ( # `
 x )  e. 
NN0 )
30 vex 2961 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
31 hashclb 11646 . . . . . . . . . . . . . . 15  |-  ( x  e.  _V  ->  (
x  e.  Fin  <->  ( # `  x
)  e.  NN0 )
)
3230, 31ax-mp 5 . . . . . . . . . . . . . 14  |-  ( x  e.  Fin  <->  ( # `  x
)  e.  NN0 )
3329, 32sylibr 205 . . . . . . . . . . . . 13  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  x  e.  Fin )
3433adantr 453 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G ) )  /\  ( ( # `  y
)  =  N  /\  ( # `  x )  =  N ) )  /\  z  e.  x
)  ->  x  e.  Fin )
35 simpr 449 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G ) )  /\  ( ( # `  y
)  =  N  /\  ( # `  x )  =  N ) )  /\  z  e.  x
)  ->  z  e.  x )
3618odsubdvds 15210 . . . . . . . . . . . 12  |-  ( ( x  e.  (SubGrp `  G )  /\  x  e.  Fin  /\  z  e.  x )  ->  (
( od `  G
) `  z )  ||  ( # `  x
) )
3727, 34, 35, 36syl3anc 1185 . . . . . . . . . . 11  |-  ( ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G ) )  /\  ( ( # `  y
)  =  N  /\  ( # `  x )  =  N ) )  /\  z  e.  x
)  ->  ( ( od `  G ) `  z )  ||  ( # `
 x ) )
3828adantr 453 . . . . . . . . . . 11  |-  ( ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G ) )  /\  ( ( # `  y
)  =  N  /\  ( # `  x )  =  N ) )  /\  z  e.  x
)  ->  ( # `  x
)  =  N )
3937, 38breqtrd 4239 . . . . . . . . . 10  |-  ( ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  ( y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G ) )  /\  ( ( # `  y
)  =  N  /\  ( # `  x )  =  N ) )  /\  z  e.  x
)  ->  ( ( od `  G ) `  z )  ||  N
)
4026, 39ssrabdv 3424 . . . . . . . . 9  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  x  C_ 
{ z  e.  (
Base `  G )  |  ( ( od
`  G ) `  z )  ||  N } )
4123, 40unssd 3525 . . . . . . . 8  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  (
y  u.  x ) 
C_  { z  e.  ( Base `  G
)  |  ( ( od `  G ) `
 z )  ||  N } )
42 ssdomg 7156 . . . . . . . 8  |-  ( { z  e.  ( Base `  G )  |  ( ( od `  G
) `  z )  ||  N }  e.  _V  ->  ( ( y  u.  x )  C_  { z  e.  ( Base `  G
)  |  ( ( od `  G ) `
 z )  ||  N }  ->  ( y  u.  x )  ~<_  { z  e.  ( Base `  G )  |  ( ( od `  G
) `  z )  ||  N } ) )
432, 41, 42mpsyl 62 . . . . . . 7  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  (
y  u.  x )  ~<_  { z  e.  (
Base `  G )  |  ( ( od
`  G ) `  z )  ||  N } )
44 idomsubgmo.g . . . . . . . . . . 11  |-  G  =  ( (mulGrp `  R
)s  (Unit `  R )
)
4544, 4, 18idomodle 27503 . . . . . . . . . 10  |-  ( ( R  e. IDomn  /\  N  e.  NN )  ->  ( # `
 { z  e.  ( Base `  G
)  |  ( ( od `  G ) `
 z )  ||  N } )  <_  N
)
46453ad2ant1 979 . . . . . . . . 9  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  ( # `
 { z  e.  ( Base `  G
)  |  ( ( od `  G ) `
 z )  ||  N } )  <_  N
)
4746, 8breqtrrd 4241 . . . . . . . 8  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  ( # `
 { z  e.  ( Base `  G
)  |  ( ( od `  G ) `
 z )  ||  N } )  <_  ( # `
 y ) )
482a1i 11 . . . . . . . . . 10  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  { z  e.  ( Base `  G
)  |  ( ( od `  G ) `
 z )  ||  N }  e.  _V )
49 hashbnd 11629 . . . . . . . . . 10  |-  ( ( { z  e.  (
Base `  G )  |  ( ( od
`  G ) `  z )  ||  N }  e.  _V  /\  ( # `
 y )  e. 
NN0  /\  ( # `  {
z  e.  ( Base `  G )  |  ( ( od `  G
) `  z )  ||  N } )  <_ 
( # `  y ) )  ->  { z  e.  ( Base `  G
)  |  ( ( od `  G ) `
 z )  ||  N }  e.  Fin )
5048, 11, 47, 49syl3anc 1185 . . . . . . . . 9  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  { z  e.  ( Base `  G
)  |  ( ( od `  G ) `
 z )  ||  N }  e.  Fin )
51 hashdom 11658 . . . . . . . . 9  |-  ( ( { z  e.  (
Base `  G )  |  ( ( od
`  G ) `  z )  ||  N }  e.  Fin  /\  y  e.  _V )  ->  (
( # `  { z  e.  ( Base `  G
)  |  ( ( od `  G ) `
 z )  ||  N } )  <_  ( # `
 y )  <->  { z  e.  ( Base `  G
)  |  ( ( od `  G ) `
 z )  ||  N }  ~<_  y )
)
5250, 12, 51sylancl 645 . . . . . . . 8  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  (
( # `  { z  e.  ( Base `  G
)  |  ( ( od `  G ) `
 z )  ||  N } )  <_  ( # `
 y )  <->  { z  e.  ( Base `  G
)  |  ( ( od `  G ) `
 z )  ||  N }  ~<_  y )
)
5347, 52mpbid 203 . . . . . . 7  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  { z  e.  ( Base `  G
)  |  ( ( od `  G ) `
 z )  ||  N }  ~<_  y )
54 domtr 7163 . . . . . . 7  |-  ( ( ( y  u.  x
)  ~<_  { z  e.  ( Base `  G
)  |  ( ( od `  G ) `
 z )  ||  N }  /\  { z  e.  ( Base `  G
)  |  ( ( od `  G ) `
 z )  ||  N }  ~<_  y )  ->  ( y  u.  x
)  ~<_  y )
5543, 53, 54syl2anc 644 . . . . . 6  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  (
y  u.  x )  ~<_  y )
5612, 30unex 4710 . . . . . . 7  |-  ( y  u.  x )  e. 
_V
57 ssun1 3512 . . . . . . 7  |-  y  C_  ( y  u.  x
)
58 ssdomg 7156 . . . . . . 7  |-  ( ( y  u.  x )  e.  _V  ->  (
y  C_  ( y  u.  x )  ->  y  ~<_  ( y  u.  x
) ) )
5956, 57, 58mp2 9 . . . . . 6  |-  y  ~<_  ( y  u.  x )
60 sbth 7230 . . . . . 6  |-  ( ( ( y  u.  x
)  ~<_  y  /\  y  ~<_  ( y  u.  x
) )  ->  (
y  u.  x ) 
~~  y )
6155, 59, 60sylancl 645 . . . . 5  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  (
y  u.  x ) 
~~  y )
628, 28eqtr4d 2473 . . . . . . 7  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  ( # `
 y )  =  ( # `  x
) )
63 hashen 11636 . . . . . . . 8  |-  ( ( y  e.  Fin  /\  x  e.  Fin )  ->  ( ( # `  y
)  =  ( # `  x )  <->  y  ~~  x ) )
6415, 33, 63syl2anc 644 . . . . . . 7  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  (
( # `  y )  =  ( # `  x
)  <->  y  ~~  x
) )
6562, 64mpbid 203 . . . . . 6  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  y  ~~  x )
66 fiuneneq 27504 . . . . . 6  |-  ( ( y  ~~  x  /\  y  e.  Fin )  ->  ( ( y  u.  x )  ~~  y  <->  y  =  x ) )
6765, 15, 66syl2anc 644 . . . . 5  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  (
( y  u.  x
)  ~~  y  <->  y  =  x ) )
6861, 67mpbid 203 . . . 4  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
)  /\  ( ( # `
 y )  =  N  /\  ( # `  x )  =  N ) )  ->  y  =  x )
69683expia 1156 . . 3  |-  ( ( ( R  e. IDomn  /\  N  e.  NN )  /\  (
y  e.  (SubGrp `  G )  /\  x  e.  (SubGrp `  G )
) )  ->  (
( ( # `  y
)  =  N  /\  ( # `  x )  =  N )  -> 
y  =  x ) )
7069ralrimivva 2800 . 2  |-  ( ( R  e. IDomn  /\  N  e.  NN )  ->  A. y  e.  (SubGrp `  G ) A. x  e.  (SubGrp `  G ) ( ( ( # `  y
)  =  N  /\  ( # `  x )  =  N )  -> 
y  =  x ) )
71 fveq2 5731 . . . 4  |-  ( y  =  x  ->  ( # `
 y )  =  ( # `  x
) )
7271eqeq1d 2446 . . 3  |-  ( y  =  x  ->  (
( # `  y )  =  N  <->  ( # `  x
)  =  N ) )
7372rmo4 3129 . 2  |-  ( E* y  e.  (SubGrp `  G ) ( # `  y )  =  N  <->  A. y  e.  (SubGrp `  G ) A. x  e.  (SubGrp `  G )
( ( ( # `  y )  =  N  /\  ( # `  x
)  =  N )  ->  y  =  x ) )
7470, 73sylibr 205 1  |-  ( ( R  e. IDomn  /\  N  e.  NN )  ->  E* y  e.  (SubGrp `  G
) ( # `  y
)  =  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707   E*wrmo 2710   {crab 2711   _Vcvv 2958    u. cun 3320    C_ wss 3322   class class class wbr 4215   ` cfv 5457  (class class class)co 6084    ~~ cen 7109    ~<_ cdom 7110   Fincfn 7112    <_ cle 9126   NNcn 10005   NN0cn0 10226   #chash 11623    || cdivides 12857   Basecbs 13474   ↾s cress 13475  SubGrpcsubg 14943   odcod 15168  mulGrpcmgp 15653  Unitcui 15749  IDomncidom 16346
This theorem is referenced by:  proot1mul  27506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073  ax-addf 9074  ax-mulf 9075
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-disj 4186  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-of 6308  df-ofr 6309  df-1st 6352  df-2nd 6353  df-tpos 6482  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-2o 6728  df-oadd 6731  df-omul 6732  df-er 6908  df-ec 6910  df-qs 6914  df-map 7023  df-pm 7024  df-ixp 7067  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-sup 7449  df-oi 7482  df-card 7831  df-acn 7834  df-cda 8053  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-4 10065  df-5 10066  df-6 10067  df-7 10068  df-8 10069  df-9 10070  df-10 10071  df-n0 10227  df-z 10288  df-dec 10388  df-uz 10494  df-rp 10618  df-fz 11049  df-fzo 11141  df-fl 11207  df-mod 11256  df-seq 11329  df-exp 11388  df-hash 11624  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-clim 12287  df-sum 12485  df-dvds 12858  df-struct 13476  df-ndx 13477  df-slot 13478  df-base 13479  df-sets 13480  df-ress 13481  df-plusg 13547  df-mulr 13548  df-starv 13549  df-sca 13550  df-vsca 13551  df-tset 13553  df-ple 13554  df-ds 13556  df-unif 13557  df-hom 13558  df-cco 13559  df-prds 13676  df-pws 13678  df-0g 13732  df-gsum 13733  df-mre 13816  df-mrc 13817  df-acs 13819  df-mnd 14695  df-mhm 14743  df-submnd 14744  df-grp 14817  df-minusg 14818  df-sbg 14819  df-mulg 14820  df-subg 14946  df-eqg 14948  df-ghm 15009  df-cntz 15121  df-od 15172  df-cmn 15419  df-abl 15420  df-mgp 15654  df-rng 15668  df-cring 15669  df-ur 15670  df-oppr 15733  df-dvdsr 15751  df-unit 15752  df-invr 15782  df-rnghom 15824  df-subrg 15871  df-lmod 15957  df-lss 16014  df-lsp 16053  df-nzr 16334  df-rlreg 16348  df-domn 16349  df-idom 16350  df-assa 16377  df-asp 16378  df-ascl 16379  df-psr 16422  df-mvr 16423  df-mpl 16424  df-evls 16425  df-evl 16426  df-opsr 16430  df-psr1 16581  df-vr1 16582  df-ply1 16583  df-evl1 16585  df-coe1 16586  df-cnfld 16709  df-mdeg 19983  df-deg1 19984  df-mon1 20058  df-uc1p 20059  df-q1p 20060  df-r1p 20061
  Copyright terms: Public domain W3C validator