MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idref Structured version   Unicode version

Theorem idref 5971
Description: TODO: This is the same as issref 5239 (which has a much longer proof). Should we replace issref 5239 with this one? - NM 9-May-2016.

Two ways to state a relation is reflexive. (Adapted from Tarski.) (Contributed by FL, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) (Proof modification is discouraged.)

Assertion
Ref Expression
idref  |-  ( (  _I  |`  A )  C_  R  <->  A. x  e.  A  x R x )
Distinct variable groups:    x, A    x, R

Proof of Theorem idref
StepHypRef Expression
1 eqid 2435 . . . 4  |-  ( x  e.  A  |->  <. x ,  x >. )  =  ( x  e.  A  |->  <.
x ,  x >. )
21fmpt 5882 . . 3  |-  ( A. x  e.  A  <. x ,  x >.  e.  R  <->  ( x  e.  A  |->  <.
x ,  x >. ) : A --> R )
3 opex 4419 . . . . 5  |-  <. x ,  x >.  e.  _V
43, 1fnmpti 5565 . . . 4  |-  ( x  e.  A  |->  <. x ,  x >. )  Fn  A
5 df-f 5450 . . . 4  |-  ( ( x  e.  A  |->  <.
x ,  x >. ) : A --> R  <->  ( (
x  e.  A  |->  <.
x ,  x >. )  Fn  A  /\  ran  ( x  e.  A  |-> 
<. x ,  x >. ) 
C_  R ) )
64, 5mpbiran 885 . . 3  |-  ( ( x  e.  A  |->  <.
x ,  x >. ) : A --> R  <->  ran  ( x  e.  A  |->  <. x ,  x >. )  C_  R
)
72, 6bitri 241 . 2  |-  ( A. x  e.  A  <. x ,  x >.  e.  R  <->  ran  ( x  e.  A  |-> 
<. x ,  x >. ) 
C_  R )
8 df-br 4205 . . 3  |-  ( x R x  <->  <. x ,  x >.  e.  R
)
98ralbii 2721 . 2  |-  ( A. x  e.  A  x R x  <->  A. x  e.  A  <. x ,  x >.  e.  R )
10 mptresid 5187 . . . 4  |-  ( x  e.  A  |->  x )  =  (  _I  |`  A )
11 vex 2951 . . . . 5  |-  x  e. 
_V
1211fnasrn 5904 . . . 4  |-  ( x  e.  A  |->  x )  =  ran  ( x  e.  A  |->  <. x ,  x >. )
1310, 12eqtr3i 2457 . . 3  |-  (  _I  |`  A )  =  ran  ( x  e.  A  |-> 
<. x ,  x >. )
1413sseq1i 3364 . 2  |-  ( (  _I  |`  A )  C_  R  <->  ran  ( x  e.  A  |->  <. x ,  x >. )  C_  R )
157, 9, 143bitr4ri 270 1  |-  ( (  _I  |`  A )  C_  R  <->  A. x  e.  A  x R x )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    e. wcel 1725   A.wral 2697    C_ wss 3312   <.cop 3809   class class class wbr 4204    e. cmpt 4258    _I cid 4485   ran crn 4871    |` cres 4872    Fn wfn 5441   -->wf 5442
This theorem is referenced by:  retos  24270  filnetlem2  26399
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454
  Copyright terms: Public domain W3C validator