MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idrval Unicode version

Theorem idrval 20994
Description: The value of the identity element. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
idrval.1  |-  X  =  ran  G
idrval.2  |-  U  =  (GId `  G )
Assertion
Ref Expression
idrval  |-  ( G  e.  A  ->  U  =  ( iota_ u  e.  X A. x  e.  X  ( ( u G x )  =  x  /\  ( x G u )  =  x ) ) )
Distinct variable groups:    u, G, x    u, X, x
Allowed substitution hints:    A( x, u)    U( x, u)

Proof of Theorem idrval
StepHypRef Expression
1 idrval.2 . 2  |-  U  =  (GId `  G )
2 idrval.1 . . 3  |-  X  =  ran  G
32gidval 20880 . 2  |-  ( G  e.  A  ->  (GId `  G )  =  (
iota_ u  e.  X A. x  e.  X  ( ( u G x )  =  x  /\  ( x G u )  =  x ) ) )
41, 3syl5eq 2327 1  |-  ( G  e.  A  ->  U  =  ( iota_ u  e.  X A. x  e.  X  ( ( u G x )  =  x  /\  ( x G u )  =  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   ran crn 4690   ` cfv 5255  (class class class)co 5858   iota_crio 6297  GIdcgi 20854
This theorem is referenced by:  iorlid  20995  cmpidelt  20996
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-riota 6304  df-gid 20859
  Copyright terms: Public domain W3C validator