Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifbieq12i Structured version   Unicode version

Theorem ifbieq12i 3752
 Description: Equivalence deduction for conditional operators. (Contributed by NM, 18-Mar-2013.)
Hypotheses
Ref Expression
ifbieq12i.1
ifbieq12i.2
ifbieq12i.3
Assertion
Ref Expression
ifbieq12i

Proof of Theorem ifbieq12i
StepHypRef Expression
1 ifbieq12i.2 . . 3
2 ifeq1 3735 . . 3
31, 2ax-mp 8 . 2
4 ifbieq12i.1 . . 3
5 ifbieq12i.3 . . 3
64, 5ifbieq2i 3750 . 2
73, 6eqtri 2455 1
 Colors of variables: wff set class Syntax hints:   wb 177   wceq 1652  cif 3731 This theorem is referenced by:  cbvriota  6552  cbvditg  19733 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-rab 2706  df-v 2950  df-un 3317  df-if 3732
 Copyright terms: Public domain W3C validator