MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifbieq2i Unicode version

Theorem ifbieq2i 3584
Description: Equivalence/equality inference for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
ifbieq2i.1  |-  ( ph  <->  ps )
ifbieq2i.2  |-  A  =  B
Assertion
Ref Expression
ifbieq2i  |-  if (
ph ,  C ,  A )  =  if ( ps ,  C ,  B )

Proof of Theorem ifbieq2i
StepHypRef Expression
1 ifbieq2i.1 . . 3  |-  ( ph  <->  ps )
2 ifbi 3582 . . 3  |-  ( (
ph 
<->  ps )  ->  if ( ph ,  C ,  A )  =  if ( ps ,  C ,  A ) )
31, 2ax-mp 8 . 2  |-  if (
ph ,  C ,  A )  =  if ( ps ,  C ,  A )
4 ifbieq2i.2 . . 3  |-  A  =  B
5 ifeq2 3570 . . 3  |-  ( A  =  B  ->  if ( ps ,  C ,  A )  =  if ( ps ,  C ,  B ) )
64, 5ax-mp 8 . 2  |-  if ( ps ,  C ,  A )  =  if ( ps ,  C ,  B )
73, 6eqtri 2303 1  |-  if (
ph ,  C ,  A )  =  if ( ps ,  C ,  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    = wceq 1623   ifcif 3565
This theorem is referenced by:  ifbieq12i  3586  gcdcom  12699  gcdass  12724  cdleme31sdnN  30576  cdlemefr44  30614  cdleme48fv  30688  cdlemeg49lebilem  30728  cdleme50eq  30730
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-rab 2552  df-v 2790  df-un 3157  df-if 3566
  Copyright terms: Public domain W3C validator