Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifbieq2i Structured version   Unicode version

Theorem ifbieq2i 3758
 Description: Equivalence/equality inference for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
ifbieq2i.1
ifbieq2i.2
Assertion
Ref Expression
ifbieq2i

Proof of Theorem ifbieq2i
StepHypRef Expression
1 ifbieq2i.1 . . 3
2 ifbi 3756 . . 3
31, 2ax-mp 8 . 2
4 ifbieq2i.2 . . 3
5 ifeq2 3744 . . 3
64, 5ax-mp 8 . 2
73, 6eqtri 2456 1
 Colors of variables: wff set class Syntax hints:   wb 177   wceq 1652  cif 3739 This theorem is referenced by:  ifbieq12i  3760  gcdcom  13020  gcdass  13045  cdleme31sdnN  31184  cdlemefr44  31222  cdleme48fv  31296  cdlemeg49lebilem  31336  cdleme50eq  31338 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-rab 2714  df-v 2958  df-un 3325  df-if 3740
 Copyright terms: Public domain W3C validator