Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifeq12 Structured version   Unicode version

Theorem ifeq12 3754
 Description: Equality theorem for conditional operators. (Contributed by NM, 1-Sep-2004.)
Assertion
Ref Expression
ifeq12

Proof of Theorem ifeq12
StepHypRef Expression
1 ifeq1 3745 . 2
2 ifeq2 3746 . 2
31, 2sylan9eq 2490 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360   wceq 1653  cif 3741 This theorem is referenced by:  xaddmnf1  10816  xpslem  13800  ditg0  19742  mumullem2  20965 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-rab 2716  df-v 2960  df-un 3327  df-if 3742
 Copyright terms: Public domain W3C validator