Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifnmfalse Structured version   Unicode version

Theorem ifnmfalse 28678
Description: If A is not a member of B, but an "if" condition requires it, then the "false" branch results. This is a simple utility to provide a slight shortening and simplification of proofs vs. applying iffalse 3774 directly in this case. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
ifnmfalse  |-  ( A  e/  B  ->  if ( A  e.  B ,  C ,  D )  =  D )

Proof of Theorem ifnmfalse
StepHypRef Expression
1 df-nel 2609 . 2  |-  ( A  e/  B  <->  -.  A  e.  B )
2 iffalse 3774 . 2  |-  ( -.  A  e.  B  ->  if ( A  e.  B ,  C ,  D )  =  D )
31, 2sylbi 189 1  |-  ( A  e/  B  ->  if ( A  e.  B ,  C ,  D )  =  D )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1654    e. wcel 1728    e/ wnel 2607   ifcif 3767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-6 1747  ax-7 1752  ax-11 1764  ax-12 1954  ax-ext 2424
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1661  df-clab 2430  df-cleq 2436  df-clel 2439  df-nel 2609  df-if 3768
  Copyright terms: Public domain W3C validator