Mathbox for Andrew Salmon < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifr0 Structured version   Unicode version

Theorem ifr0 27629
 Description: A class that is founded by the identity relation is null. (Contributed by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ifr0

Proof of Theorem ifr0
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 equid 1688 . . . . 5
2 vex 2959 . . . . . 6
32ideq 5025 . . . . 5
41, 3mpbir 201 . . . 4
5 frirr 4559 . . . . 5
65ex 424 . . . 4
74, 6mt2i 112 . . 3
87eq0rdv 3662 . 2
9 fr0 4561 . . 3
10 freq2 4553 . . 3
119, 10mpbiri 225 . 2
128, 11impbii 181 1
 Colors of variables: wff set class Syntax hints:   wn 3   wb 177   wceq 1652   wcel 1725  c0 3628   class class class wbr 4212   cid 4493   wfr 4538 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-br 4213  df-opab 4267  df-id 4498  df-fr 4541  df-xp 4884  df-rel 4885
 Copyright terms: Public domain W3C validator