MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ig1peu Unicode version

Theorem ig1peu 19573
Description: There is a unique monic polynomial of minimal degree in any nonzero ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypotheses
Ref Expression
ig1peu.p  |-  P  =  (Poly1 `  R )
ig1peu.u  |-  U  =  (LIdeal `  P )
ig1peu.z  |-  .0.  =  ( 0g `  P )
ig1peu.m  |-  M  =  (Monic1p `  R )
ig1peu.d  |-  D  =  ( deg1  `  R )
Assertion
Ref Expression
ig1peu  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  E! g  e.  ( I  i^i  M
) ( D `  g )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) )
Distinct variable groups:    D, g    g, I    g, M    P, g    R, g    U, g    .0. , g

Proof of Theorem ig1peu
Dummy variable  h is distinct from all other variables.
StepHypRef Expression
1 eqid 2296 . . . . . . . . . . 11  |-  ( Base `  P )  =  (
Base `  P )
2 ig1peu.u . . . . . . . . . . 11  |-  U  =  (LIdeal `  P )
31, 2lidlss 15977 . . . . . . . . . 10  |-  ( I  e.  U  ->  I  C_  ( Base `  P
) )
433ad2ant2 977 . . . . . . . . 9  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  I  C_  ( Base `  P ) )
5 ssdif 3324 . . . . . . . . 9  |-  ( I 
C_  ( Base `  P
)  ->  ( I  \  {  .0.  } ) 
C_  ( ( Base `  P )  \  {  .0.  } ) )
64, 5syl 15 . . . . . . . 8  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  ( I  \  {  .0.  } )  C_  ( ( Base `  P
)  \  {  .0.  } ) )
7 imass2 5065 . . . . . . . 8  |-  ( ( I  \  {  .0.  } )  C_  ( ( Base `  P )  \  {  .0.  } )  -> 
( D " (
I  \  {  .0.  } ) )  C_  ( D " ( ( Base `  P )  \  {  .0.  } ) ) )
86, 7syl 15 . . . . . . 7  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  ( D "
( I  \  {  .0.  } ) )  C_  ( D " ( (
Base `  P )  \  {  .0.  } ) ) )
9 drngrng 15535 . . . . . . . . 9  |-  ( R  e.  DivRing  ->  R  e.  Ring )
1093ad2ant1 976 . . . . . . . 8  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  R  e.  Ring )
11 ig1peu.d . . . . . . . . 9  |-  D  =  ( deg1  `  R )
12 ig1peu.p . . . . . . . . 9  |-  P  =  (Poly1 `  R )
13 ig1peu.z . . . . . . . . 9  |-  .0.  =  ( 0g `  P )
1411, 12, 13, 1deg1n0ima 19491 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( D
" ( ( Base `  P )  \  {  .0.  } ) )  C_  NN0 )
1510, 14syl 15 . . . . . . 7  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  ( D "
( ( Base `  P
)  \  {  .0.  } ) )  C_  NN0 )
168, 15sstrd 3202 . . . . . 6  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  ( D "
( I  \  {  .0.  } ) )  C_  NN0 )
17 nn0uz 10278 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
1816, 17syl6sseq 3237 . . . . 5  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  ( D "
( I  \  {  .0.  } ) )  C_  ( ZZ>= `  0 )
)
1912ply1rng 16342 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  P  e. 
Ring )
2010, 19syl 15 . . . . . . . . 9  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  P  e.  Ring )
21 simp2 956 . . . . . . . . 9  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  I  e.  U
)
222, 13lidl0cl 15980 . . . . . . . . 9  |-  ( ( P  e.  Ring  /\  I  e.  U )  ->  .0.  e.  I )
2320, 21, 22syl2anc 642 . . . . . . . 8  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  .0.  e.  I
)
2423snssd 3776 . . . . . . 7  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  {  .0.  }  C_  I )
25 simp3 957 . . . . . . . 8  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  I  =/=  {  .0.  } )
2625necomd 2542 . . . . . . 7  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  {  .0.  }  =/=  I )
27 pssdifn0 3528 . . . . . . 7  |-  ( ( {  .0.  }  C_  I  /\  {  .0.  }  =/=  I )  ->  (
I  \  {  .0.  } )  =/=  (/) )
2824, 26, 27syl2anc 642 . . . . . 6  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  ( I  \  {  .0.  } )  =/=  (/) )
2911, 12, 1deg1xrf 19483 . . . . . . . . . 10  |-  D :
( Base `  P ) --> RR*
30 ffn 5405 . . . . . . . . . 10  |-  ( D : ( Base `  P
) --> RR*  ->  D  Fn  ( Base `  P )
)
3129, 30ax-mp 8 . . . . . . . . 9  |-  D  Fn  ( Base `  P )
3231a1i 10 . . . . . . . 8  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  D  Fn  ( Base `  P ) )
33 difss 3316 . . . . . . . . 9  |-  ( I 
\  {  .0.  }
)  C_  I
3433, 4syl5ss 3203 . . . . . . . 8  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  ( I  \  {  .0.  } )  C_  ( Base `  P )
)
35 fnimaeq0 5381 . . . . . . . 8  |-  ( ( D  Fn  ( Base `  P )  /\  (
I  \  {  .0.  } )  C_  ( Base `  P ) )  -> 
( ( D "
( I  \  {  .0.  } ) )  =  (/) 
<->  ( I  \  {  .0.  } )  =  (/) ) )
3632, 34, 35syl2anc 642 . . . . . . 7  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  ( ( D
" ( I  \  {  .0.  } ) )  =  (/)  <->  ( I  \  {  .0.  } )  =  (/) ) )
3736necon3bid 2494 . . . . . 6  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  ( ( D
" ( I  \  {  .0.  } ) )  =/=  (/)  <->  ( I  \  {  .0.  } )  =/=  (/) ) )
3828, 37mpbird 223 . . . . 5  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  ( D "
( I  \  {  .0.  } ) )  =/=  (/) )
39 infmssuzcl 10317 . . . . 5  |-  ( ( ( D " (
I  \  {  .0.  } ) )  C_  ( ZZ>=
`  0 )  /\  ( D " ( I 
\  {  .0.  }
) )  =/=  (/) )  ->  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  e.  ( D "
( I  \  {  .0.  } ) ) )
4018, 38, 39syl2anc 642 . . . 4  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  e.  ( D
" ( I  \  {  .0.  } ) ) )
41 fvelimab 5594 . . . . 5  |-  ( ( D  Fn  ( Base `  P )  /\  (
I  \  {  .0.  } )  C_  ( Base `  P ) )  -> 
( sup ( ( D " ( I 
\  {  .0.  }
) ) ,  RR ,  `'  <  )  e.  ( D " (
I  \  {  .0.  } ) )  <->  E. h  e.  ( I  \  {  .0.  } ) ( D `
 h )  =  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )
4232, 34, 41syl2anc 642 . . . 4  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  ( sup (
( D " (
I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  e.  ( D " (
I  \  {  .0.  } ) )  <->  E. h  e.  ( I  \  {  .0.  } ) ( D `
 h )  =  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )
4340, 42mpbid 201 . . 3  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  E. h  e.  ( I  \  {  .0.  } ) ( D `  h )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) )
4420adantr 451 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  P  e.  Ring )
45 simpl2 959 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  I  e.  U )
4610adantr 451 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  R  e.  Ring )
47 eqid 2296 . . . . . . . . . . 11  |-  (algSc `  P )  =  (algSc `  P )
48 eqid 2296 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
4912, 47, 48, 1ply1sclf 16377 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  (algSc `  P ) : (
Base `  R ) --> ( Base `  P )
)
5046, 49syl 15 . . . . . . . . 9  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  (algSc `  P ) : (
Base `  R ) --> ( Base `  P )
)
51 simpl1 958 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  R  e.  DivRing )
5234sselda 3193 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  h  e.  ( Base `  P
) )
53 eldifsni 3763 . . . . . . . . . . . . . 14  |-  ( h  e.  ( I  \  {  .0.  } )  ->  h  =/=  .0.  )
5453adantl 452 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  h  =/=  .0.  )
55 eqid 2296 . . . . . . . . . . . . . 14  |-  (Unic1p `  R
)  =  (Unic1p `  R
)
5612, 1, 13, 55drnguc1p 19572 . . . . . . . . . . . . 13  |-  ( ( R  e.  DivRing  /\  h  e.  ( Base `  P
)  /\  h  =/=  .0.  )  ->  h  e.  (Unic1p `  R ) )
5751, 52, 54, 56syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  h  e.  (Unic1p `  R ) )
58 eqid 2296 . . . . . . . . . . . . 13  |-  (Unit `  R )  =  (Unit `  R )
5911, 58, 55uc1pldg 19550 . . . . . . . . . . . 12  |-  ( h  e.  (Unic1p `  R )  -> 
( (coe1 `  h ) `  ( D `  h ) )  e.  (Unit `  R ) )
6057, 59syl 15 . . . . . . . . . . 11  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  (
(coe1 `  h ) `  ( D `  h ) )  e.  (Unit `  R ) )
61 eqid 2296 . . . . . . . . . . . 12  |-  ( invr `  R )  =  (
invr `  R )
6258, 61unitinvcl 15472 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  (
(coe1 `  h ) `  ( D `  h ) )  e.  (Unit `  R ) )  -> 
( ( invr `  R
) `  ( (coe1 `  h ) `  ( D `  h )
) )  e.  (Unit `  R ) )
6346, 60, 62syl2anc 642 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  (
( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) )  e.  (Unit `  R ) )
6448, 58unitcl 15457 . . . . . . . . . 10  |-  ( ( ( invr `  R
) `  ( (coe1 `  h ) `  ( D `  h )
) )  e.  (Unit `  R )  ->  (
( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) )  e.  (
Base `  R )
)
6563, 64syl 15 . . . . . . . . 9  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  (
( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) )  e.  (
Base `  R )
)
66 ffvelrn 5679 . . . . . . . . 9  |-  ( ( (algSc `  P ) : ( Base `  R
) --> ( Base `  P
)  /\  ( ( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) )  e.  (
Base `  R )
)  ->  ( (algSc `  P ) `  (
( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) ) )  e.  ( Base `  P
) )
6750, 65, 66syl2anc 642 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  (
(algSc `  P ) `  ( ( invr `  R
) `  ( (coe1 `  h ) `  ( D `  h )
) ) )  e.  ( Base `  P
) )
68 eldifi 3311 . . . . . . . . 9  |-  ( h  e.  ( I  \  {  .0.  } )  ->  h  e.  I )
6968adantl 452 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  h  e.  I )
70 eqid 2296 . . . . . . . . 9  |-  ( .r
`  P )  =  ( .r `  P
)
712, 1, 70lidlmcl 15985 . . . . . . . 8  |-  ( ( ( P  e.  Ring  /\  I  e.  U )  /\  ( ( (algSc `  P ) `  (
( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) ) )  e.  ( Base `  P
)  /\  h  e.  I ) )  -> 
( ( (algSc `  P ) `  (
( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) ) ) ( .r `  P ) h )  e.  I
)
7244, 45, 67, 69, 71syl22anc 1183 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  (
( (algSc `  P
) `  ( ( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) ) ) ( .r `  P ) h )  e.  I
)
73 ig1peu.m . . . . . . . . 9  |-  M  =  (Monic1p `  R )
7455, 73, 12, 70, 47, 11, 61uc1pmon1p 19553 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  h  e.  (Unic1p `  R ) )  ->  ( ( (algSc `  P ) `  (
( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) ) ) ( .r `  P ) h )  e.  M
)
7546, 57, 74syl2anc 642 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  (
( (algSc `  P
) `  ( ( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) ) ) ( .r `  P ) h )  e.  M
)
76 elin 3371 . . . . . . 7  |-  ( ( ( (algSc `  P
) `  ( ( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) ) ) ( .r `  P ) h )  e.  ( I  i^i  M )  <-> 
( ( ( (algSc `  P ) `  (
( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) ) ) ( .r `  P ) h )  e.  I  /\  ( ( (algSc `  P ) `  (
( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) ) ) ( .r `  P ) h )  e.  M
) )
7772, 75, 76sylanbrc 645 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  (
( (algSc `  P
) `  ( ( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) ) ) ( .r `  P ) h )  e.  ( I  i^i  M ) )
78 eqid 2296 . . . . . . . . . 10  |-  (RLReg `  R )  =  (RLReg `  R )
7978, 58unitrrg 16050 . . . . . . . . 9  |-  ( R  e.  Ring  ->  (Unit `  R )  C_  (RLReg `  R ) )
8046, 79syl 15 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  (Unit `  R )  C_  (RLReg `  R ) )
8180, 63sseldd 3194 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  (
( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) )  e.  (RLReg `  R ) )
8211, 12, 78, 1, 70, 47deg1mul3 19517 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) )  e.  (RLReg `  R )  /\  h  e.  ( Base `  P
) )  ->  ( D `  ( (
(algSc `  P ) `  ( ( invr `  R
) `  ( (coe1 `  h ) `  ( D `  h )
) ) ) ( .r `  P ) h ) )  =  ( D `  h
) )
8346, 81, 52, 82syl3anc 1182 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  ( D `  ( (
(algSc `  P ) `  ( ( invr `  R
) `  ( (coe1 `  h ) `  ( D `  h )
) ) ) ( .r `  P ) h ) )  =  ( D `  h
) )
84 fveq2 5541 . . . . . . . 8  |-  ( g  =  ( ( (algSc `  P ) `  (
( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) ) ) ( .r `  P ) h )  ->  ( D `  g )  =  ( D `  ( ( (algSc `  P ) `  (
( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) ) ) ( .r `  P ) h ) ) )
8584eqeq1d 2304 . . . . . . 7  |-  ( g  =  ( ( (algSc `  P ) `  (
( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) ) ) ( .r `  P ) h )  ->  (
( D `  g
)  =  ( D `
 h )  <->  ( D `  ( ( (algSc `  P ) `  (
( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) ) ) ( .r `  P ) h ) )  =  ( D `  h
) ) )
8685rspcev 2897 . . . . . 6  |-  ( ( ( ( (algSc `  P ) `  (
( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) ) ) ( .r `  P ) h )  e.  ( I  i^i  M )  /\  ( D `  ( ( (algSc `  P ) `  (
( invr `  R ) `  ( (coe1 `  h ) `  ( D `  h ) ) ) ) ( .r `  P ) h ) )  =  ( D `  h
) )  ->  E. g  e.  ( I  i^i  M
) ( D `  g )  =  ( D `  h ) )
8777, 83, 86syl2anc 642 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  E. g  e.  ( I  i^i  M
) ( D `  g )  =  ( D `  h ) )
88 eqeq2 2305 . . . . . 6  |-  ( ( D `  h )  =  sup ( ( D " ( I 
\  {  .0.  }
) ) ,  RR ,  `'  <  )  -> 
( ( D `  g )  =  ( D `  h )  <-> 
( D `  g
)  =  sup (
( D " (
I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )
8988rexbidv 2577 . . . . 5  |-  ( ( D `  h )  =  sup ( ( D " ( I 
\  {  .0.  }
) ) ,  RR ,  `'  <  )  -> 
( E. g  e.  ( I  i^i  M
) ( D `  g )  =  ( D `  h )  <->  E. g  e.  (
I  i^i  M )
( D `  g
)  =  sup (
( D " (
I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )
9087, 89syl5ibcom 211 . . . 4  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  h  e.  ( I  \  {  .0.  } ) )  ->  (
( D `  h
)  =  sup (
( D " (
I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  ->  E. g  e.  (
I  i^i  M )
( D `  g
)  =  sup (
( D " (
I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )
9190rexlimdva 2680 . . 3  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  ( E. h  e.  ( I  \  {  .0.  } ) ( D `
 h )  =  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  ->  E. g  e.  ( I  i^i  M
) ( D `  g )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )
9243, 91mpd 14 . 2  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  E. g  e.  ( I  i^i  M ) ( D `  g
)  =  sup (
( D " (
I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) )
93 eqid 2296 . . . . . . 7  |-  ( -g `  P )  =  (
-g `  P )
9410ad2antrr 706 . . . . . . 7  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  I  =/=  {  .0.  } )  /\  ( g  e.  ( I  i^i 
M )  /\  h  e.  ( I  i^i  M
) ) )  /\  ( ( D `  g )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  /\  ( D `  h )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )  ->  R  e.  Ring )
95 inss2 3403 . . . . . . . . 9  |-  ( I  i^i  M )  C_  M
96 simprl 732 . . . . . . . . 9  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  g  e.  ( I  i^i  M
) )
9795, 96sseldi 3191 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  g  e.  M )
9897adantr 451 . . . . . . 7  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  I  =/=  {  .0.  } )  /\  ( g  e.  ( I  i^i 
M )  /\  h  e.  ( I  i^i  M
) ) )  /\  ( ( D `  g )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  /\  ( D `  h )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )  ->  g  e.  M )
99 simprl 732 . . . . . . 7  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  I  =/=  {  .0.  } )  /\  ( g  e.  ( I  i^i 
M )  /\  h  e.  ( I  i^i  M
) ) )  /\  ( ( D `  g )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  /\  ( D `  h )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )  ->  ( D `  g )  =  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) )
100 simprr 733 . . . . . . . . 9  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  h  e.  ( I  i^i  M
) )
10195, 100sseldi 3191 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  h  e.  M )
102101adantr 451 . . . . . . 7  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  I  =/=  {  .0.  } )  /\  ( g  e.  ( I  i^i 
M )  /\  h  e.  ( I  i^i  M
) ) )  /\  ( ( D `  g )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  /\  ( D `  h )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )  ->  h  e.  M )
103 simprr 733 . . . . . . 7  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  I  =/=  {  .0.  } )  /\  ( g  e.  ( I  i^i 
M )  /\  h  e.  ( I  i^i  M
) ) )  /\  ( ( D `  g )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  /\  ( D `  h )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )  ->  ( D `  h )  =  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) )
10411, 73, 12, 93, 94, 98, 99, 102, 103deg1submon1p 19554 . . . . . 6  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  I  =/=  {  .0.  } )  /\  ( g  e.  ( I  i^i 
M )  /\  h  e.  ( I  i^i  M
) ) )  /\  ( ( D `  g )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  /\  ( D `  h )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )  ->  ( D `  ( g
( -g `  P ) h ) )  <  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) )
105104ex 423 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  (
( ( D `  g )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  /\  ( D `  h )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) )  ->  ( D `  ( g ( -g `  P ) h ) )  <  sup (
( D " (
I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )
10618ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  I  =/=  {  .0.  } )  /\  ( g  e.  ( I  i^i 
M )  /\  h  e.  ( I  i^i  M
) ) )  /\  ( g ( -g `  P ) h )  =/=  .0.  )  -> 
( D " (
I  \  {  .0.  } ) )  C_  ( ZZ>=
`  0 ) )
10731a1i 10 . . . . . . . . . 10  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  I  =/=  {  .0.  } )  /\  ( g  e.  ( I  i^i 
M )  /\  h  e.  ( I  i^i  M
) ) )  /\  ( g ( -g `  P ) h )  =/=  .0.  )  ->  D  Fn  ( Base `  P ) )
10834ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  I  =/=  {  .0.  } )  /\  ( g  e.  ( I  i^i 
M )  /\  h  e.  ( I  i^i  M
) ) )  /\  ( g ( -g `  P ) h )  =/=  .0.  )  -> 
( I  \  {  .0.  } )  C_  ( Base `  P ) )
10920adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  P  e.  Ring )
110 simpl2 959 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  I  e.  U )
111 inss1 3402 . . . . . . . . . . . . . 14  |-  ( I  i^i  M )  C_  I
112111, 96sseldi 3191 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  g  e.  I )
113111, 100sseldi 3191 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  h  e.  I )
1142, 93lidlsubcl 15984 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Ring  /\  I  e.  U )  /\  ( g  e.  I  /\  h  e.  I ) )  -> 
( g ( -g `  P ) h )  e.  I )
115109, 110, 112, 113, 114syl22anc 1183 . . . . . . . . . . . 12  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  (
g ( -g `  P
) h )  e.  I )
116115adantr 451 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  I  =/=  {  .0.  } )  /\  ( g  e.  ( I  i^i 
M )  /\  h  e.  ( I  i^i  M
) ) )  /\  ( g ( -g `  P ) h )  =/=  .0.  )  -> 
( g ( -g `  P ) h )  e.  I )
117 simpr 447 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  I  =/=  {  .0.  } )  /\  ( g  e.  ( I  i^i 
M )  /\  h  e.  ( I  i^i  M
) ) )  /\  ( g ( -g `  P ) h )  =/=  .0.  )  -> 
( g ( -g `  P ) h )  =/=  .0.  )
118 eldifsn 3762 . . . . . . . . . . 11  |-  ( ( g ( -g `  P
) h )  e.  ( I  \  {  .0.  } )  <->  ( (
g ( -g `  P
) h )  e.  I  /\  ( g ( -g `  P
) h )  =/= 
.0.  ) )
119116, 117, 118sylanbrc 645 . . . . . . . . . 10  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  I  =/=  {  .0.  } )  /\  ( g  e.  ( I  i^i 
M )  /\  h  e.  ( I  i^i  M
) ) )  /\  ( g ( -g `  P ) h )  =/=  .0.  )  -> 
( g ( -g `  P ) h )  e.  ( I  \  {  .0.  } ) )
120 fnfvima 5772 . . . . . . . . . 10  |-  ( ( D  Fn  ( Base `  P )  /\  (
I  \  {  .0.  } )  C_  ( Base `  P )  /\  (
g ( -g `  P
) h )  e.  ( I  \  {  .0.  } ) )  -> 
( D `  (
g ( -g `  P
) h ) )  e.  ( D "
( I  \  {  .0.  } ) ) )
121107, 108, 119, 120syl3anc 1182 . . . . . . . . 9  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  I  =/=  {  .0.  } )  /\  ( g  e.  ( I  i^i 
M )  /\  h  e.  ( I  i^i  M
) ) )  /\  ( g ( -g `  P ) h )  =/=  .0.  )  -> 
( D `  (
g ( -g `  P
) h ) )  e.  ( D "
( I  \  {  .0.  } ) ) )
122 infmssuzle 10316 . . . . . . . . 9  |-  ( ( ( D " (
I  \  {  .0.  } ) )  C_  ( ZZ>=
`  0 )  /\  ( D `  ( g ( -g `  P
) h ) )  e.  ( D "
( I  \  {  .0.  } ) ) )  ->  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  <_  ( D `  ( g ( -g `  P ) h ) ) )
123106, 121, 122syl2anc 642 . . . . . . . 8  |-  ( ( ( ( R  e.  DivRing 
/\  I  e.  U  /\  I  =/=  {  .0.  } )  /\  ( g  e.  ( I  i^i 
M )  /\  h  e.  ( I  i^i  M
) ) )  /\  ( g ( -g `  P ) h )  =/=  .0.  )  ->  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  <_  ( D `  ( g ( -g `  P ) h ) ) )
124123ex 423 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  (
( g ( -g `  P ) h )  =/=  .0.  ->  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  <_  ( D `  ( g ( -g `  P ) h ) ) ) )
125 imassrn 5041 . . . . . . . . . . 11  |-  ( D
" ( I  \  {  .0.  } ) ) 
C_  ran  D
126 frn 5411 . . . . . . . . . . . 12  |-  ( D : ( Base `  P
) --> RR*  ->  ran  D  C_  RR* )
12729, 126ax-mp 8 . . . . . . . . . . 11  |-  ran  D  C_ 
RR*
128125, 127sstri 3201 . . . . . . . . . 10  |-  ( D
" ( I  \  {  .0.  } ) ) 
C_  RR*
129128, 40sseldi 3191 . . . . . . . . 9  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  e.  RR* )
130129adantr 451 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  e.  RR* )
131 rnggrp 15362 . . . . . . . . . . . 12  |-  ( P  e.  Ring  ->  P  e. 
Grp )
13220, 131syl 15 . . . . . . . . . . 11  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  P  e.  Grp )
133132adantr 451 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  P  e.  Grp )
134111, 4syl5ss 3203 . . . . . . . . . . . 12  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  ( I  i^i 
M )  C_  ( Base `  P ) )
135134adantr 451 . . . . . . . . . . 11  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  (
I  i^i  M )  C_  ( Base `  P
) )
136135, 96sseldd 3194 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  g  e.  ( Base `  P
) )
137135, 100sseldd 3194 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  h  e.  ( Base `  P
) )
1381, 93grpsubcl 14562 . . . . . . . . . 10  |-  ( ( P  e.  Grp  /\  g  e.  ( Base `  P )  /\  h  e.  ( Base `  P
) )  ->  (
g ( -g `  P
) h )  e.  ( Base `  P
) )
139133, 136, 137, 138syl3anc 1182 . . . . . . . . 9  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  (
g ( -g `  P
) h )  e.  ( Base `  P
) )
14011, 12, 1deg1xrcl 19484 . . . . . . . . 9  |-  ( ( g ( -g `  P
) h )  e.  ( Base `  P
)  ->  ( D `  ( g ( -g `  P ) h ) )  e.  RR* )
141139, 140syl 15 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  ( D `  ( g
( -g `  P ) h ) )  e. 
RR* )
142 xrlenlt 8906 . . . . . . . 8  |-  ( ( sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  e.  RR*  /\  ( D `  ( g
( -g `  P ) h ) )  e. 
RR* )  ->  ( sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  <_  ( D `  ( g ( -g `  P ) h ) )  <->  -.  ( D `  ( g ( -g `  P ) h ) )  <  sup (
( D " (
I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )
143130, 141, 142syl2anc 642 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  ( sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  <_  ( D `  ( g ( -g `  P ) h ) )  <->  -.  ( D `  ( g ( -g `  P ) h ) )  <  sup (
( D " (
I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )
144124, 143sylibd 205 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  (
( g ( -g `  P ) h )  =/=  .0.  ->  -.  ( D `  ( g ( -g `  P
) h ) )  <  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )
145144necon4ad 2520 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  (
( D `  (
g ( -g `  P
) h ) )  <  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  ->  ( g
( -g `  P ) h )  =  .0.  ) )
146105, 145syld 40 . . . 4  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  (
( ( D `  g )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  /\  ( D `  h )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) )  ->  ( g
( -g `  P ) h )  =  .0.  ) )
1471, 13, 93grpsubeq0 14568 . . . . 5  |-  ( ( P  e.  Grp  /\  g  e.  ( Base `  P )  /\  h  e.  ( Base `  P
) )  ->  (
( g ( -g `  P ) h )  =  .0.  <->  g  =  h ) )
148133, 136, 137, 147syl3anc 1182 . . . 4  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  (
( g ( -g `  P ) h )  =  .0.  <->  g  =  h ) )
149146, 148sylibd 205 . . 3  |-  ( ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/=  {  .0.  }
)  /\  ( g  e.  ( I  i^i  M
)  /\  h  e.  ( I  i^i  M ) ) )  ->  (
( ( D `  g )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  /\  ( D `  h )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) )  ->  g  =  h ) )
150149ralrimivva 2648 . 2  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  A. g  e.  ( I  i^i  M ) A. h  e.  ( I  i^i  M ) ( ( ( D `
 g )  =  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  /\  ( D `
 h )  =  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) )  ->  g  =  h ) )
151 fveq2 5541 . . . 4  |-  ( g  =  h  ->  ( D `  g )  =  ( D `  h ) )
152151eqeq1d 2304 . . 3  |-  ( g  =  h  ->  (
( D `  g
)  =  sup (
( D " (
I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  <->  ( D `  h )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )
153152reu4 2972 . 2  |-  ( E! g  e.  ( I  i^i  M ) ( D `  g )  =  sup ( ( D " ( I 
\  {  .0.  }
) ) ,  RR ,  `'  <  )  <->  ( E. g  e.  ( I  i^i  M ) ( D `
 g )  =  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  )  /\  A. g  e.  ( I  i^i  M
) A. h  e.  ( I  i^i  M
) ( ( ( D `  g )  =  sup ( ( D " ( I 
\  {  .0.  }
) ) ,  RR ,  `'  <  )  /\  ( D `  h )  =  sup ( ( D " ( I 
\  {  .0.  }
) ) ,  RR ,  `'  <  ) )  ->  g  =  h ) ) )
15492, 150, 153sylanbrc 645 1  |-  ( ( R  e.  DivRing  /\  I  e.  U  /\  I  =/= 
{  .0.  } )  ->  E! g  e.  ( I  i^i  M
) ( D `  g )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   E!wreu 2558    \ cdif 3162    i^i cin 3164    C_ wss 3165   (/)c0 3468   {csn 3653   class class class wbr 4039   `'ccnv 4704   ran crn 4706   "cima 4708    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5874   supcsup 7209   RRcr 8752   0cc0 8753   RR*cxr 8882    < clt 8883    <_ cle 8884   NN0cn0 9981   ZZ>=cuz 10246   Basecbs 13164   .rcmulr 13225   0gc0g 13416   Grpcgrp 14378   -gcsg 14381   Ringcrg 15353  Unitcui 15437   invrcinvr 15469   DivRingcdr 15528  LIdealclidl 15939  RLRegcrlreg 16036  algSccascl 16068  Poly1cpl1 16268  coe1cco1 16271   deg1 cdg1 19456  Monic1pcmn1 19527  Unic1pcuc1p 19528
This theorem is referenced by:  ig1pval3  19576
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-ofr 6095  df-1st 6138  df-2nd 6139  df-tpos 6250  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-fz 10799  df-fzo 10887  df-seq 11063  df-hash 11354  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-0g 13420  df-gsum 13421  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-mhm 14431  df-submnd 14432  df-grp 14505  df-minusg 14506  df-sbg 14507  df-mulg 14508  df-subg 14634  df-ghm 14697  df-cntz 14809  df-cmn 15107  df-abl 15108  df-mgp 15342  df-rng 15356  df-cring 15357  df-ur 15358  df-oppr 15421  df-dvdsr 15439  df-unit 15440  df-invr 15470  df-drng 15530  df-subrg 15559  df-lmod 15645  df-lss 15706  df-sra 15941  df-rgmod 15942  df-lidl 15943  df-rlreg 16040  df-ascl 16071  df-psr 16114  df-mvr 16115  df-mpl 16116  df-opsr 16122  df-psr1 16273  df-vr1 16274  df-ply1 16275  df-coe1 16278  df-cnfld 16394  df-mdeg 19457  df-deg1 19458  df-mon1 19532  df-uc1p 19533
  Copyright terms: Public domain W3C validator