MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ig1pval Unicode version

Theorem ig1pval 19558
Description: Substitutions for the polynomial ideal generator function. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypotheses
Ref Expression
ig1pval.p  |-  P  =  (Poly1 `  R )
ig1pval.g  |-  G  =  (idlGen1p `
 R )
ig1pval.z  |-  .0.  =  ( 0g `  P )
ig1pval.u  |-  U  =  (LIdeal `  P )
ig1pval.d  |-  D  =  ( deg1  `  R )
ig1pval.m  |-  M  =  (Monic1p `  R )
Assertion
Ref Expression
ig1pval  |-  ( ( R  e.  V  /\  I  e.  U )  ->  ( G `  I
)  =  if ( I  =  {  .0.  } ,  .0.  ,  (
iota_ g  e.  (
I  i^i  M )
( D `  g
)  =  sup (
( D " (
I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) ) )
Distinct variable groups:    g, I    g, M    R, g
Allowed substitution hints:    D( g)    P( g)    U( g)    G( g)    V( g)    .0. ( g)

Proof of Theorem ig1pval
Dummy variables  i 
r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ig1pval.g . . . 4  |-  G  =  (idlGen1p `
 R )
2 elex 2796 . . . . 5  |-  ( R  e.  V  ->  R  e.  _V )
3 fveq2 5525 . . . . . . . . . 10  |-  ( r  =  R  ->  (Poly1 `  r )  =  (Poly1 `  R ) )
4 ig1pval.p . . . . . . . . . 10  |-  P  =  (Poly1 `  R )
53, 4syl6eqr 2333 . . . . . . . . 9  |-  ( r  =  R  ->  (Poly1 `  r )  =  P )
65fveq2d 5529 . . . . . . . 8  |-  ( r  =  R  ->  (LIdeal `  (Poly1 `  r ) )  =  (LIdeal `  P
) )
7 ig1pval.u . . . . . . . 8  |-  U  =  (LIdeal `  P )
86, 7syl6eqr 2333 . . . . . . 7  |-  ( r  =  R  ->  (LIdeal `  (Poly1 `  r ) )  =  U )
95fveq2d 5529 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( 0g `  (Poly1 `  r ) )  =  ( 0g `  P ) )
10 ig1pval.z . . . . . . . . . . 11  |-  .0.  =  ( 0g `  P )
119, 10syl6eqr 2333 . . . . . . . . . 10  |-  ( r  =  R  ->  ( 0g `  (Poly1 `  r ) )  =  .0.  )
1211sneqd 3653 . . . . . . . . 9  |-  ( r  =  R  ->  { ( 0g `  (Poly1 `  r
) ) }  =  {  .0.  } )
1312eqeq2d 2294 . . . . . . . 8  |-  ( r  =  R  ->  (
i  =  { ( 0g `  (Poly1 `  r
) ) }  <->  i  =  {  .0.  } ) )
14 fveq2 5525 . . . . . . . . . . 11  |-  ( r  =  R  ->  (Monic1p `  r )  =  (Monic1p `  R ) )
15 ig1pval.m . . . . . . . . . . 11  |-  M  =  (Monic1p `  R )
1614, 15syl6eqr 2333 . . . . . . . . . 10  |-  ( r  =  R  ->  (Monic1p `  r )  =  M )
1716ineq2d 3370 . . . . . . . . 9  |-  ( r  =  R  ->  (
i  i^i  (Monic1p `  r
) )  =  ( i  i^i  M ) )
18 fveq2 5525 . . . . . . . . . . . 12  |-  ( r  =  R  ->  ( deg1  `  r )  =  ( deg1  `  R ) )
19 ig1pval.d . . . . . . . . . . . 12  |-  D  =  ( deg1  `  R )
2018, 19syl6eqr 2333 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( deg1  `  r )  =  D )
2120fveq1d 5527 . . . . . . . . . 10  |-  ( r  =  R  ->  (
( deg1  `
 r ) `  g )  =  ( D `  g ) )
2220imaeq1d 5011 . . . . . . . . . . . 12  |-  ( r  =  R  ->  (
( deg1  `
 r ) "
( i  \  {
( 0g `  (Poly1 `  r ) ) } ) )  =  ( D " ( i 
\  { ( 0g
`  (Poly1 `  r ) ) } ) ) )
2312difeq2d 3294 . . . . . . . . . . . . 13  |-  ( r  =  R  ->  (
i  \  { ( 0g `  (Poly1 `  r ) ) } )  =  ( i  \  {  .0.  } ) )
2423imaeq2d 5012 . . . . . . . . . . . 12  |-  ( r  =  R  ->  ( D " ( i  \  { ( 0g `  (Poly1 `  r ) ) } ) )  =  ( D " ( i 
\  {  .0.  }
) ) )
2522, 24eqtrd 2315 . . . . . . . . . . 11  |-  ( r  =  R  ->  (
( deg1  `
 r ) "
( i  \  {
( 0g `  (Poly1 `  r ) ) } ) )  =  ( D " ( i 
\  {  .0.  }
) ) )
2625supeq1d 7199 . . . . . . . . . 10  |-  ( r  =  R  ->  sup ( ( ( deg1  `  r
) " ( i 
\  { ( 0g
`  (Poly1 `  r ) ) } ) ) ,  RR ,  `'  <  )  =  sup ( ( D " ( i 
\  {  .0.  }
) ) ,  RR ,  `'  <  ) )
2721, 26eqeq12d 2297 . . . . . . . . 9  |-  ( r  =  R  ->  (
( ( deg1  `  r ) `  g )  =  sup ( ( ( deg1  `  r
) " ( i 
\  { ( 0g
`  (Poly1 `  r ) ) } ) ) ,  RR ,  `'  <  )  <-> 
( D `  g
)  =  sup (
( D " (
i  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )
2817, 27riotaeqbidv 6307 . . . . . . . 8  |-  ( r  =  R  ->  ( iota_ g  e.  ( i  i^i  (Monic1p `  r ) ) ( ( deg1  `  r ) `  g )  =  sup ( ( ( deg1  `  r
) " ( i 
\  { ( 0g
`  (Poly1 `  r ) ) } ) ) ,  RR ,  `'  <  ) )  =  ( iota_ g  e.  ( i  i^i 
M ) ( D `
 g )  =  sup ( ( D
" ( i  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )
2913, 11, 28ifbieq12d 3587 . . . . . . 7  |-  ( r  =  R  ->  if ( i  =  {
( 0g `  (Poly1 `  r ) ) } ,  ( 0g `  (Poly1 `  r ) ) ,  ( iota_ g  e.  ( i  i^i  (Monic1p `  r
) ) ( ( deg1  `  r ) `  g
)  =  sup (
( ( deg1  `  r ) " ( i  \  { ( 0g `  (Poly1 `  r ) ) } ) ) ,  RR ,  `'  <  ) ) )  =  if ( i  =  {  .0.  } ,  .0.  ,  (
iota_ g  e.  (
i  i^i  M )
( D `  g
)  =  sup (
( D " (
i  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) ) )
308, 29mpteq12dv 4098 . . . . . 6  |-  ( r  =  R  ->  (
i  e.  (LIdeal `  (Poly1 `  r ) )  |->  if ( i  =  {
( 0g `  (Poly1 `  r ) ) } ,  ( 0g `  (Poly1 `  r ) ) ,  ( iota_ g  e.  ( i  i^i  (Monic1p `  r
) ) ( ( deg1  `  r ) `  g
)  =  sup (
( ( deg1  `  r ) " ( i  \  { ( 0g `  (Poly1 `  r ) ) } ) ) ,  RR ,  `'  <  ) ) ) )  =  ( i  e.  U  |->  if ( i  =  {  .0.  } ,  .0.  , 
( iota_ g  e.  ( i  i^i  M ) ( D `  g
)  =  sup (
( D " (
i  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) ) ) )
31 df-ig1p 19520 . . . . . 6  |- idlGen1p  =  ( r  e.  _V  |->  ( i  e.  (LIdeal `  (Poly1 `  r
) )  |->  if ( i  =  { ( 0g `  (Poly1 `  r
) ) } , 
( 0g `  (Poly1 `  r ) ) ,  ( iota_ g  e.  ( i  i^i  (Monic1p `  r
) ) ( ( deg1  `  r ) `  g
)  =  sup (
( ( deg1  `  r ) " ( i  \  { ( 0g `  (Poly1 `  r ) ) } ) ) ,  RR ,  `'  <  ) ) ) ) )
32 fvex 5539 . . . . . . . 8  |-  (LIdeal `  P )  e.  _V
337, 32eqeltri 2353 . . . . . . 7  |-  U  e. 
_V
3433mptex 5746 . . . . . 6  |-  ( i  e.  U  |->  if ( i  =  {  .0.  } ,  .0.  ,  (
iota_ g  e.  (
i  i^i  M )
( D `  g
)  =  sup (
( D " (
i  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) ) )  e.  _V
3530, 31, 34fvmpt 5602 . . . . 5  |-  ( R  e.  _V  ->  (idlGen1p `  R )  =  ( i  e.  U  |->  if ( i  =  {  .0.  } ,  .0.  , 
( iota_ g  e.  ( i  i^i  M ) ( D `  g
)  =  sup (
( D " (
i  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) ) ) )
362, 35syl 15 . . . 4  |-  ( R  e.  V  ->  (idlGen1p `  R )  =  ( i  e.  U  |->  if ( i  =  {  .0.  } ,  .0.  , 
( iota_ g  e.  ( i  i^i  M ) ( D `  g
)  =  sup (
( D " (
i  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) ) ) )
371, 36syl5eq 2327 . . 3  |-  ( R  e.  V  ->  G  =  ( i  e.  U  |->  if ( i  =  {  .0.  } ,  .0.  ,  ( iota_ g  e.  ( i  i^i 
M ) ( D `
 g )  =  sup ( ( D
" ( i  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) ) ) )
3837fveq1d 5527 . 2  |-  ( R  e.  V  ->  ( G `  I )  =  ( ( i  e.  U  |->  if ( i  =  {  .0.  } ,  .0.  ,  (
iota_ g  e.  (
i  i^i  M )
( D `  g
)  =  sup (
( D " (
i  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) ) ) `  I
) )
39 eqeq1 2289 . . . 4  |-  ( i  =  I  ->  (
i  =  {  .0.  }  <-> 
I  =  {  .0.  } ) )
40 ineq1 3363 . . . . 5  |-  ( i  =  I  ->  (
i  i^i  M )  =  ( I  i^i 
M ) )
41 difeq1 3287 . . . . . . . 8  |-  ( i  =  I  ->  (
i  \  {  .0.  } )  =  ( I 
\  {  .0.  }
) )
4241imaeq2d 5012 . . . . . . 7  |-  ( i  =  I  ->  ( D " ( i  \  {  .0.  } ) )  =  ( D "
( I  \  {  .0.  } ) ) )
4342supeq1d 7199 . . . . . 6  |-  ( i  =  I  ->  sup ( ( D "
( i  \  {  .0.  } ) ) ,  RR ,  `'  <  )  =  sup ( ( D " ( I 
\  {  .0.  }
) ) ,  RR ,  `'  <  ) )
4443eqeq2d 2294 . . . . 5  |-  ( i  =  I  ->  (
( D `  g
)  =  sup (
( D " (
i  \  {  .0.  } ) ) ,  RR ,  `'  <  )  <->  ( D `  g )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )
4540, 44riotaeqbidv 6307 . . . 4  |-  ( i  =  I  ->  ( iota_ g  e.  ( i  i^i  M ) ( D `  g )  =  sup ( ( D " ( i 
\  {  .0.  }
) ) ,  RR ,  `'  <  ) )  =  ( iota_ g  e.  ( I  i^i  M
) ( D `  g )  =  sup ( ( D "
( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )
4639, 45ifbieq2d 3585 . . 3  |-  ( i  =  I  ->  if ( i  =  {  .0.  } ,  .0.  , 
( iota_ g  e.  ( i  i^i  M ) ( D `  g
)  =  sup (
( D " (
i  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )  =  if ( I  =  {  .0.  } ,  .0.  ,  (
iota_ g  e.  (
I  i^i  M )
( D `  g
)  =  sup (
( D " (
I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) ) )
47 eqid 2283 . . 3  |-  ( i  e.  U  |->  if ( i  =  {  .0.  } ,  .0.  ,  (
iota_ g  e.  (
i  i^i  M )
( D `  g
)  =  sup (
( D " (
i  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) ) )  =  ( i  e.  U  |->  if ( i  =  {  .0.  } ,  .0.  , 
( iota_ g  e.  ( i  i^i  M ) ( D `  g
)  =  sup (
( D " (
i  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) ) )
48 fvex 5539 . . . . 5  |-  ( 0g
`  P )  e. 
_V
4910, 48eqeltri 2353 . . . 4  |-  .0.  e.  _V
50 riotaex 6308 . . . 4  |-  ( iota_ g  e.  ( I  i^i 
M ) ( D `
 g )  =  sup ( ( D
" ( I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) )  e.  _V
5149, 50ifex 3623 . . 3  |-  if ( I  =  {  .0.  } ,  .0.  ,  (
iota_ g  e.  (
I  i^i  M )
( D `  g
)  =  sup (
( D " (
I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) )  e.  _V
5246, 47, 51fvmpt 5602 . 2  |-  ( I  e.  U  ->  (
( i  e.  U  |->  if ( i  =  {  .0.  } ,  .0.  ,  ( iota_ g  e.  ( i  i^i  M
) ( D `  g )  =  sup ( ( D "
( i  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) ) ) `  I )  =  if ( I  =  {  .0.  } ,  .0.  , 
( iota_ g  e.  ( I  i^i  M ) ( D `  g
)  =  sup (
( D " (
I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) ) )
5338, 52sylan9eq 2335 1  |-  ( ( R  e.  V  /\  I  e.  U )  ->  ( G `  I
)  =  if ( I  =  {  .0.  } ,  .0.  ,  (
iota_ g  e.  (
I  i^i  M )
( D `  g
)  =  sup (
( D " (
I  \  {  .0.  } ) ) ,  RR ,  `'  <  ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788    \ cdif 3149    i^i cin 3151   ifcif 3565   {csn 3640    e. cmpt 4077   `'ccnv 4688   "cima 4692   ` cfv 5255   iota_crio 6297   supcsup 7193   RRcr 8736    < clt 8867   0gc0g 13400  LIdealclidl 15923  Poly1cpl1 16252   deg1 cdg1 19440  Monic1pcmn1 19511  idlGen1pcig1p 19515
This theorem is referenced by:  ig1pval2  19559  ig1pval3  19560
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 6304  df-sup 7194  df-ig1p 19520
  Copyright terms: Public domain W3C validator