MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinab Unicode version

Theorem iinab 3963
Description: Indexed intersection of a class builder. (Contributed by NM, 6-Dec-2011.)
Assertion
Ref Expression
iinab  |-  |^|_ x  e.  A  { y  |  ph }  =  {
y  |  A. x  e.  A  ph }
Distinct variable groups:    y, A    x, y
Allowed substitution hints:    ph( x, y)    A( x)

Proof of Theorem iinab
StepHypRef Expression
1 nfcv 2419 . . . 4  |-  F/_ y A
2 nfab1 2421 . . . 4  |-  F/_ y { y  |  ph }
31, 2nfiin 3932 . . 3  |-  F/_ y |^|_ x  e.  A  {
y  |  ph }
4 nfab1 2421 . . 3  |-  F/_ y { y  |  A. x  e.  A  ph }
53, 4cleqf 2443 . 2  |-  ( |^|_ x  e.  A  { y  |  ph }  =  { y  |  A. x  e.  A  ph }  <->  A. y ( y  e. 
|^|_ x  e.  A  { y  |  ph } 
<->  y  e.  { y  |  A. x  e.  A  ph } ) )
6 abid 2271 . . . 4  |-  ( y  e.  { y  | 
ph }  <->  ph )
76ralbii 2567 . . 3  |-  ( A. x  e.  A  y  e.  { y  |  ph } 
<-> 
A. x  e.  A  ph )
8 vex 2791 . . . 4  |-  y  e. 
_V
9 eliin 3910 . . . 4  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  A  { y  |  ph }  <->  A. x  e.  A  y  e.  { y  |  ph }
) )
108, 9ax-mp 8 . . 3  |-  ( y  e.  |^|_ x  e.  A  { y  |  ph } 
<-> 
A. x  e.  A  y  e.  { y  |  ph } )
11 abid 2271 . . 3  |-  ( y  e.  { y  | 
A. x  e.  A  ph }  <->  A. x  e.  A  ph )
127, 10, 113bitr4i 268 . 2  |-  ( y  e.  |^|_ x  e.  A  { y  |  ph } 
<->  y  e.  { y  |  A. x  e.  A  ph } )
135, 12mpgbir 1537 1  |-  |^|_ x  e.  A  { y  |  ph }  =  {
y  |  A. x  e.  A  ph }
Colors of variables: wff set class
Syntax hints:    <-> wb 176    = wceq 1623    e. wcel 1684   {cab 2269   A.wral 2543   _Vcvv 2788   |^|_ciin 3906
This theorem is referenced by:  iinrab  3964
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-v 2790  df-iin 3908
  Copyright terms: Public domain W3C validator