MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iincld Unicode version

Theorem iincld 16792
Description: The indexed intersection of a collection  B ( x ) of closed sets is closed. Theorem 6.1(2) of [Munkres] p. 93. (Contributed by NM, 5-Oct-2006.) (Revised by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
iincld  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  |^|_ x  e.  A  B  e.  ( Clsd `  J )
)
Distinct variable groups:    x, A    x, J
Allowed substitution hint:    B( x)

Proof of Theorem iincld
StepHypRef Expression
1 eqid 2296 . . . . . . . 8  |-  U. J  =  U. J
21cldss 16782 . . . . . . 7  |-  ( B  e.  ( Clsd `  J
)  ->  B  C_  U. J
)
3 dfss4 3416 . . . . . . 7  |-  ( B 
C_  U. J  <->  ( U. J  \  ( U. J  \  B ) )  =  B )
42, 3sylib 188 . . . . . 6  |-  ( B  e.  ( Clsd `  J
)  ->  ( U. J  \  ( U. J  \  B ) )  =  B )
54ralimi 2631 . . . . 5  |-  ( A. x  e.  A  B  e.  ( Clsd `  J
)  ->  A. x  e.  A  ( U. J  \  ( U. J  \  B ) )  =  B )
6 iineq2 3938 . . . . 5  |-  ( A. x  e.  A  ( U. J  \  ( U. J  \  B ) )  =  B  ->  |^|_ x  e.  A  ( U. J  \  ( U. J  \  B ) )  =  |^|_ x  e.  A  B )
75, 6syl 15 . . . 4  |-  ( A. x  e.  A  B  e.  ( Clsd `  J
)  ->  |^|_ x  e.  A  ( U. J  \  ( U. J  \  B ) )  = 
|^|_ x  e.  A  B )
87adantl 452 . . 3  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  |^|_ x  e.  A  ( U. J  \  ( U. J  \  B ) )  = 
|^|_ x  e.  A  B )
9 iindif2 3987 . . . 4  |-  ( A  =/=  (/)  ->  |^|_ x  e.  A  ( U. J  \  ( U. J  \  B ) )  =  ( U. J  \  U_ x  e.  A  ( U. J  \  B
) ) )
109adantr 451 . . 3  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  |^|_ x  e.  A  ( U. J  \  ( U. J  \  B ) )  =  ( U. J  \  U_ x  e.  A  ( U. J  \  B
) ) )
118, 10eqtr3d 2330 . 2  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  |^|_ x  e.  A  B  =  ( U. J  \  U_ x  e.  A  ( U. J  \  B ) ) )
12 r19.2z 3556 . . . 4  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  E. x  e.  A  B  e.  ( Clsd `  J )
)
13 cldrcl 16779 . . . . 5  |-  ( B  e.  ( Clsd `  J
)  ->  J  e.  Top )
1413rexlimivw 2676 . . . 4  |-  ( E. x  e.  A  B  e.  ( Clsd `  J
)  ->  J  e.  Top )
1512, 14syl 15 . . 3  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  J  e.  Top )
161cldopn 16784 . . . . . 6  |-  ( B  e.  ( Clsd `  J
)  ->  ( U. J  \  B )  e.  J )
1716ralimi 2631 . . . . 5  |-  ( A. x  e.  A  B  e.  ( Clsd `  J
)  ->  A. x  e.  A  ( U. J  \  B )  e.  J )
1817adantl 452 . . . 4  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  A. x  e.  A  ( U. J  \  B )  e.  J )
19 iunopn 16660 . . . 4  |-  ( ( J  e.  Top  /\  A. x  e.  A  ( U. J  \  B
)  e.  J )  ->  U_ x  e.  A  ( U. J  \  B
)  e.  J )
2015, 18, 19syl2anc 642 . . 3  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  U_ x  e.  A  ( U. J  \  B )  e.  J )
211opncld 16786 . . 3  |-  ( ( J  e.  Top  /\  U_ x  e.  A  ( U. J  \  B
)  e.  J )  ->  ( U. J  \ 
U_ x  e.  A  ( U. J  \  B
) )  e.  (
Clsd `  J )
)
2215, 20, 21syl2anc 642 . 2  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  ( U. J  \  U_ x  e.  A  ( U. J  \  B ) )  e.  ( Clsd `  J
) )
2311, 22eqeltrd 2370 1  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  |^|_ x  e.  A  B  e.  ( Clsd `  J )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557    \ cdif 3162    C_ wss 3165   (/)c0 3468   U.cuni 3843   U_ciun 3921   |^|_ciin 3922   ` cfv 5271   Topctop 16647   Clsdccld 16769
This theorem is referenced by:  intcld  16793  riincld  16797  hauscmplem  17149  ubthlem1  21465
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fn 5274  df-fv 5279  df-top 16652  df-cld 16772
  Copyright terms: Public domain W3C validator