Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinconst Structured version   Unicode version

Theorem iinconst 4094
 Description: Indexed intersection of a constant class, i.e. where does not depend on . (Contributed by Mario Carneiro, 6-Feb-2015.)
Assertion
Ref Expression
iinconst
Distinct variable groups:   ,   ,

Proof of Theorem iinconst
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 r19.3rzv 3713 . . 3
2 vex 2951 . . . 4
3 eliin 4090 . . . 4
42, 3ax-mp 8 . . 3
51, 4syl6rbbr 256 . 2
65eqrdv 2433 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wceq 1652   wcel 1725   wne 2598  wral 2697  cvv 2948  c0 3620  ciin 4086 This theorem is referenced by:  iin0  4365  ptbasfi  17605 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-v 2950  df-dif 3315  df-nul 3621  df-iin 4088
 Copyright terms: Public domain W3C validator