MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iindif2 Unicode version

Theorem iindif2 3987
Description: Indexed intersection of class difference. Generalization of half of theorem "De Morgan's laws" in [Enderton] p. 31. Use uniiun 3971 to recover Enderton's theorem. (Contributed by NM, 5-Oct-2006.)
Assertion
Ref Expression
iindif2  |-  ( A  =/=  (/)  ->  |^|_ x  e.  A  ( B  \  C )  =  ( B  \  U_ x  e.  A  C )
)
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem iindif2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 r19.28zv 3562 . . . 4  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  (
y  e.  B  /\  -.  y  e.  C
)  <->  ( y  e.  B  /\  A. x  e.  A  -.  y  e.  C ) ) )
2 eldif 3175 . . . . . 6  |-  ( y  e.  ( B  \  C )  <->  ( y  e.  B  /\  -.  y  e.  C ) )
32bicomi 193 . . . . 5  |-  ( ( y  e.  B  /\  -.  y  e.  C
)  <->  y  e.  ( B  \  C ) )
43ralbii 2580 . . . 4  |-  ( A. x  e.  A  (
y  e.  B  /\  -.  y  e.  C
)  <->  A. x  e.  A  y  e.  ( B  \  C ) )
5 ralnex 2566 . . . . . 6  |-  ( A. x  e.  A  -.  y  e.  C  <->  -.  E. x  e.  A  y  e.  C )
6 eliun 3925 . . . . . 6  |-  ( y  e.  U_ x  e.  A  C  <->  E. x  e.  A  y  e.  C )
75, 6xchbinxr 302 . . . . 5  |-  ( A. x  e.  A  -.  y  e.  C  <->  -.  y  e.  U_ x  e.  A  C )
87anbi2i 675 . . . 4  |-  ( ( y  e.  B  /\  A. x  e.  A  -.  y  e.  C )  <->  ( y  e.  B  /\  -.  y  e.  U_ x  e.  A  C )
)
91, 4, 83bitr3g 278 . . 3  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  y  e.  ( B  \  C
)  <->  ( y  e.  B  /\  -.  y  e.  U_ x  e.  A  C ) ) )
10 vex 2804 . . . 4  |-  y  e. 
_V
11 eliin 3926 . . . 4  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  A  ( B  \  C )  <->  A. x  e.  A  y  e.  ( B  \  C ) ) )
1210, 11ax-mp 8 . . 3  |-  ( y  e.  |^|_ x  e.  A  ( B  \  C )  <->  A. x  e.  A  y  e.  ( B  \  C ) )
13 eldif 3175 . . 3  |-  ( y  e.  ( B  \  U_ x  e.  A  C )  <->  ( y  e.  B  /\  -.  y  e.  U_ x  e.  A  C ) )
149, 12, 133bitr4g 279 . 2  |-  ( A  =/=  (/)  ->  ( y  e.  |^|_ x  e.  A  ( B  \  C )  <-> 
y  e.  ( B 
\  U_ x  e.  A  C ) ) )
1514eqrdv 2294 1  |-  ( A  =/=  (/)  ->  |^|_ x  e.  A  ( B  \  C )  =  ( B  \  U_ x  e.  A  C )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   _Vcvv 2801    \ cdif 3162   (/)c0 3468   U_ciun 3921   |^|_ciin 3922
This theorem is referenced by:  iincld  16792  clsval2  16803  mretopd  16845  hauscmplem  17149  cmpfi  17151
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-v 2803  df-dif 3168  df-nul 3469  df-iun 3923  df-iin 3924
  Copyright terms: Public domain W3C validator