MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iineq2 Unicode version

Theorem iineq2 4054
Description: Equality theorem for indexed intersection. (Contributed by NM, 22-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iineq2  |-  ( A. x  e.  A  B  =  C  ->  |^|_ x  e.  A  B  =  |^|_
x  e.  A  C
)

Proof of Theorem iineq2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eleq2 2450 . . . . 5  |-  ( B  =  C  ->  (
y  e.  B  <->  y  e.  C ) )
21ralimi 2726 . . . 4  |-  ( A. x  e.  A  B  =  C  ->  A. x  e.  A  ( y  e.  B  <->  y  e.  C
) )
3 ralbi 2787 . . . 4  |-  ( A. x  e.  A  (
y  e.  B  <->  y  e.  C )  ->  ( A. x  e.  A  y  e.  B  <->  A. x  e.  A  y  e.  C ) )
42, 3syl 16 . . 3  |-  ( A. x  e.  A  B  =  C  ->  ( A. x  e.  A  y  e.  B  <->  A. x  e.  A  y  e.  C )
)
54abbidv 2503 . 2  |-  ( A. x  e.  A  B  =  C  ->  { y  |  A. x  e.  A  y  e.  B }  =  { y  |  A. x  e.  A  y  e.  C }
)
6 df-iin 4040 . 2  |-  |^|_ x  e.  A  B  =  { y  |  A. x  e.  A  y  e.  B }
7 df-iin 4040 . 2  |-  |^|_ x  e.  A  C  =  { y  |  A. x  e.  A  y  e.  C }
85, 6, 73eqtr4g 2446 1  |-  ( A. x  e.  A  B  =  C  ->  |^|_ x  e.  A  B  =  |^|_
x  e.  A  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    = wceq 1649    e. wcel 1717   {cab 2375   A.wral 2651   |^|_ciin 4038
This theorem is referenced by:  iineq2i  4056  iineq2d  4057  firest  13589  iincld  17028  elrfirn2  26443
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2376  df-cleq 2382  df-clel 2385  df-ral 2656  df-iin 4040
  Copyright terms: Public domain W3C validator