Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iineq2d Structured version   Unicode version

Theorem iineq2d 4115
 Description: Equality deduction for indexed intersection. (Contributed by NM, 7-Dec-2011.)
Hypotheses
Ref Expression
iineq2d.1
iineq2d.2
Assertion
Ref Expression
iineq2d

Proof of Theorem iineq2d
StepHypRef Expression
1 iineq2d.1 . . 3
2 iineq2d.2 . . . 4
32ex 425 . . 3
41, 3ralrimi 2789 . 2
5 iineq2 4112 . 2
64, 5syl 16 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360  wnf 1554   wceq 1653   wcel 1726  wral 2707  ciin 4096 This theorem is referenced by:  iineq2dv  4117  pmapglbx  30628 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-ral 2712  df-iin 4098
 Copyright terms: Public domain W3C validator