Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iineq2dv Structured version   Unicode version

Theorem iineq2dv 4117
 Description: Equality deduction for indexed intersection. (Contributed by NM, 3-Aug-2004.)
Hypothesis
Ref Expression
iuneq2dv.1
Assertion
Ref Expression
iineq2dv
Distinct variable group:   ,
Allowed substitution hints:   ()   ()   ()

Proof of Theorem iineq2dv
StepHypRef Expression
1 nfv 1630 . 2
2 iuneq2dv.1 . 2
31, 2iineq2d 4115 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360   wceq 1653   wcel 1726  ciin 4096 This theorem is referenced by:  cntziinsn  15138  ptbasfi  17618  fclsval  18045  taylfval  20280  polfvalN  30775  dihglblem3N  32167  dihmeetlem2N  32171 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-ral 2712  df-iin 4098
 Copyright terms: Public domain W3C validator