MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iineq2dv Unicode version

Theorem iineq2dv 4008
Description: Equality deduction for indexed intersection. (Contributed by NM, 3-Aug-2004.)
Hypothesis
Ref Expression
iuneq2dv.1  |-  ( (
ph  /\  x  e.  A )  ->  B  =  C )
Assertion
Ref Expression
iineq2dv  |-  ( ph  -> 
|^|_ x  e.  A  B  =  |^|_ x  e.  A  C )
Distinct variable group:    ph, x
Allowed substitution hints:    A( x)    B( x)    C( x)

Proof of Theorem iineq2dv
StepHypRef Expression
1 nfv 1619 . 2  |-  F/ x ph
2 iuneq2dv.1 . 2  |-  ( (
ph  /\  x  e.  A )  ->  B  =  C )
31, 2iineq2d 4006 1  |-  ( ph  -> 
|^|_ x  e.  A  B  =  |^|_ x  e.  A  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1642    e. wcel 1710   |^|_ciin 3987
This theorem is referenced by:  cntziinsn  14909  ptbasfi  17382  fclsval  17805  taylfval  19842  polfvalN  30162  dihglblem3N  31554  dihmeetlem2N  31558
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2345  df-cleq 2351  df-clel 2354  df-ral 2624  df-iin 3989
  Copyright terms: Public domain W3C validator