MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinopn Unicode version

Theorem iinopn 16648
Description: The intersection of a non-empty finite family of open sets is open. (Contributed by Mario Carneiro, 14-Sep-2014.)
Assertion
Ref Expression
iinopn  |-  ( ( J  e.  Top  /\  ( A  e.  Fin  /\  A  =/=  (/)  /\  A. x  e.  A  B  e.  J ) )  ->  |^|_ x  e.  A  B  e.  J )
Distinct variable groups:    x, A    x, J
Allowed substitution hint:    B( x)

Proof of Theorem iinopn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simpr3 963 . . 3  |-  ( ( J  e.  Top  /\  ( A  e.  Fin  /\  A  =/=  (/)  /\  A. x  e.  A  B  e.  J ) )  ->  A. x  e.  A  B  e.  J )
2 dfiin2g 3936 . . 3  |-  ( A. x  e.  A  B  e.  J  ->  |^|_ x  e.  A  B  =  |^| { y  |  E. x  e.  A  y  =  B } )
31, 2syl 15 . 2  |-  ( ( J  e.  Top  /\  ( A  e.  Fin  /\  A  =/=  (/)  /\  A. x  e.  A  B  e.  J ) )  ->  |^|_ x  e.  A  B  =  |^| { y  |  E. x  e.  A  y  =  B }
)
4 simpl 443 . . 3  |-  ( ( J  e.  Top  /\  ( A  e.  Fin  /\  A  =/=  (/)  /\  A. x  e.  A  B  e.  J ) )  ->  J  e.  Top )
5 eqid 2283 . . . . 5  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
65rnmpt 4925 . . . 4  |-  ran  (
x  e.  A  |->  B )  =  { y  |  E. x  e.  A  y  =  B }
75fmpt 5681 . . . . . 6  |-  ( A. x  e.  A  B  e.  J  <->  ( x  e.  A  |->  B ) : A --> J )
81, 7sylib 188 . . . . 5  |-  ( ( J  e.  Top  /\  ( A  e.  Fin  /\  A  =/=  (/)  /\  A. x  e.  A  B  e.  J ) )  -> 
( x  e.  A  |->  B ) : A --> J )
9 frn 5395 . . . . 5  |-  ( ( x  e.  A  |->  B ) : A --> J  ->  ran  ( x  e.  A  |->  B )  C_  J
)
108, 9syl 15 . . . 4  |-  ( ( J  e.  Top  /\  ( A  e.  Fin  /\  A  =/=  (/)  /\  A. x  e.  A  B  e.  J ) )  ->  ran  ( x  e.  A  |->  B )  C_  J
)
116, 10syl5eqssr 3223 . . 3  |-  ( ( J  e.  Top  /\  ( A  e.  Fin  /\  A  =/=  (/)  /\  A. x  e.  A  B  e.  J ) )  ->  { y  |  E. x  e.  A  y  =  B }  C_  J
)
12 fdm 5393 . . . . . 6  |-  ( ( x  e.  A  |->  B ) : A --> J  ->  dom  ( x  e.  A  |->  B )  =  A )
138, 12syl 15 . . . . 5  |-  ( ( J  e.  Top  /\  ( A  e.  Fin  /\  A  =/=  (/)  /\  A. x  e.  A  B  e.  J ) )  ->  dom  ( x  e.  A  |->  B )  =  A )
14 simpr2 962 . . . . 5  |-  ( ( J  e.  Top  /\  ( A  e.  Fin  /\  A  =/=  (/)  /\  A. x  e.  A  B  e.  J ) )  ->  A  =/=  (/) )
1513, 14eqnetrd 2464 . . . 4  |-  ( ( J  e.  Top  /\  ( A  e.  Fin  /\  A  =/=  (/)  /\  A. x  e.  A  B  e.  J ) )  ->  dom  ( x  e.  A  |->  B )  =/=  (/) )
16 dm0rn0 4895 . . . . . 6  |-  ( dom  ( x  e.  A  |->  B )  =  (/)  <->  ran  ( x  e.  A  |->  B )  =  (/) )
176eqeq1i 2290 . . . . . 6  |-  ( ran  ( x  e.  A  |->  B )  =  (/)  <->  {
y  |  E. x  e.  A  y  =  B }  =  (/) )
1816, 17bitri 240 . . . . 5  |-  ( dom  ( x  e.  A  |->  B )  =  (/)  <->  {
y  |  E. x  e.  A  y  =  B }  =  (/) )
1918necon3bii 2478 . . . 4  |-  ( dom  ( x  e.  A  |->  B )  =/=  (/)  <->  { y  |  E. x  e.  A  y  =  B }  =/=  (/) )
2015, 19sylib 188 . . 3  |-  ( ( J  e.  Top  /\  ( A  e.  Fin  /\  A  =/=  (/)  /\  A. x  e.  A  B  e.  J ) )  ->  { y  |  E. x  e.  A  y  =  B }  =/=  (/) )
21 simpr1 961 . . . 4  |-  ( ( J  e.  Top  /\  ( A  e.  Fin  /\  A  =/=  (/)  /\  A. x  e.  A  B  e.  J ) )  ->  A  e.  Fin )
22 abrexfi 7156 . . . 4  |-  ( A  e.  Fin  ->  { y  |  E. x  e.  A  y  =  B }  e.  Fin )
2321, 22syl 15 . . 3  |-  ( ( J  e.  Top  /\  ( A  e.  Fin  /\  A  =/=  (/)  /\  A. x  e.  A  B  e.  J ) )  ->  { y  |  E. x  e.  A  y  =  B }  e.  Fin )
24 fiinopn 16647 . . . 4  |-  ( J  e.  Top  ->  (
( { y  |  E. x  e.  A  y  =  B }  C_  J  /\  { y  |  E. x  e.  A  y  =  B }  =/=  (/)  /\  {
y  |  E. x  e.  A  y  =  B }  e.  Fin )  ->  |^| { y  |  E. x  e.  A  y  =  B }  e.  J ) )
2524imp 418 . . 3  |-  ( ( J  e.  Top  /\  ( { y  |  E. x  e.  A  y  =  B }  C_  J  /\  { y  |  E. x  e.  A  y  =  B }  =/=  (/)  /\  {
y  |  E. x  e.  A  y  =  B }  e.  Fin ) )  ->  |^| { y  |  E. x  e.  A  y  =  B }  e.  J )
264, 11, 20, 23, 25syl13anc 1184 . 2  |-  ( ( J  e.  Top  /\  ( A  e.  Fin  /\  A  =/=  (/)  /\  A. x  e.  A  B  e.  J ) )  ->  |^| { y  |  E. x  e.  A  y  =  B }  e.  J
)
273, 26eqeltrd 2357 1  |-  ( ( J  e.  Top  /\  ( A  e.  Fin  /\  A  =/=  (/)  /\  A. x  e.  A  B  e.  J ) )  ->  |^|_ x  e.  A  B  e.  J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   {cab 2269    =/= wne 2446   A.wral 2543   E.wrex 2544    C_ wss 3152   (/)c0 3455   |^|cint 3862   |^|_ciin 3906    e. cmpt 4077   dom cdm 4689   ran crn 4690   -->wf 5251   Fincfn 6863   Topctop 16631
This theorem is referenced by:  riinopn  16654  subbascn  16984
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-fin 6867  df-top 16636
  Copyright terms: Public domain W3C validator