MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinpreima Structured version   Unicode version

Theorem iinpreima 5863
Description: Preimage of an intersection. (Contributed by FL, 16-Apr-2012.)
Assertion
Ref Expression
iinpreima  |-  ( ( Fun  F  /\  A  =/=  (/) )  ->  ( `' F " |^|_ x  e.  A  B )  =  |^|_ x  e.  A  ( `' F " B ) )
Distinct variable groups:    x, A    x, F
Allowed substitution hint:    B( x)

Proof of Theorem iinpreima
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simpll 732 . . . . 5  |-  ( ( ( Fun  F  /\  A  =/=  (/) )  /\  y  e.  ( `' F " |^|_ x  e.  A  B
) )  ->  Fun  F )
2 cnvimass 5227 . . . . . . 7  |-  ( `' F " |^|_ x  e.  A  B )  C_ 
dom  F
32sseli 3346 . . . . . 6  |-  ( y  e.  ( `' F "
|^|_ x  e.  A  B )  ->  y  e.  dom  F )
43adantl 454 . . . . 5  |-  ( ( ( Fun  F  /\  A  =/=  (/) )  /\  y  e.  ( `' F " |^|_ x  e.  A  B
) )  ->  y  e.  dom  F )
5 fvex 5745 . . . . . 6  |-  ( F `
 y )  e. 
_V
6 fvimacnvi 5847 . . . . . . 7  |-  ( ( Fun  F  /\  y  e.  ( `' F " |^|_ x  e.  A  B
) )  ->  ( F `  y )  e.  |^|_ x  e.  A  B )
76adantlr 697 . . . . . 6  |-  ( ( ( Fun  F  /\  A  =/=  (/) )  /\  y  e.  ( `' F " |^|_ x  e.  A  B
) )  ->  ( F `  y )  e.  |^|_ x  e.  A  B )
8 eliin 4100 . . . . . . 7  |-  ( ( F `  y )  e.  _V  ->  (
( F `  y
)  e.  |^|_ x  e.  A  B  <->  A. x  e.  A  ( F `  y )  e.  B
) )
98biimpa 472 . . . . . 6  |-  ( ( ( F `  y
)  e.  _V  /\  ( F `  y )  e.  |^|_ x  e.  A  B )  ->  A. x  e.  A  ( F `  y )  e.  B
)
105, 7, 9sylancr 646 . . . . 5  |-  ( ( ( Fun  F  /\  A  =/=  (/) )  /\  y  e.  ( `' F " |^|_ x  e.  A  B
) )  ->  A. x  e.  A  ( F `  y )  e.  B
)
11 fvimacnv 5848 . . . . . . 7  |-  ( ( Fun  F  /\  y  e.  dom  F )  -> 
( ( F `  y )  e.  B  <->  y  e.  ( `' F " B ) ) )
1211ralbidv 2727 . . . . . 6  |-  ( ( Fun  F  /\  y  e.  dom  F )  -> 
( A. x  e.  A  ( F `  y )  e.  B  <->  A. x  e.  A  y  e.  ( `' F " B ) ) )
1312biimpa 472 . . . . 5  |-  ( ( ( Fun  F  /\  y  e.  dom  F )  /\  A. x  e.  A  ( F `  y )  e.  B
)  ->  A. x  e.  A  y  e.  ( `' F " B ) )
141, 4, 10, 13syl21anc 1184 . . . 4  |-  ( ( ( Fun  F  /\  A  =/=  (/) )  /\  y  e.  ( `' F " |^|_ x  e.  A  B
) )  ->  A. x  e.  A  y  e.  ( `' F " B ) )
15 vex 2961 . . . . 5  |-  y  e. 
_V
16 eliin 4100 . . . . 5  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  A  ( `' F " B )  <->  A. x  e.  A  y  e.  ( `' F " B ) ) )
1715, 16ax-mp 5 . . . 4  |-  ( y  e.  |^|_ x  e.  A  ( `' F " B )  <->  A. x  e.  A  y  e.  ( `' F " B ) )
1814, 17sylibr 205 . . 3  |-  ( ( ( Fun  F  /\  A  =/=  (/) )  /\  y  e.  ( `' F " |^|_ x  e.  A  B
) )  ->  y  e.  |^|_ x  e.  A  ( `' F " B ) )
19 simpll 732 . . . . . 6  |-  ( ( ( Fun  F  /\  A  =/=  (/) )  /\  y  e.  |^|_ x  e.  A  ( `' F " B ) )  ->  Fun  F )
2016biimpd 200 . . . . . . . 8  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  A  ( `' F " B )  ->  A. x  e.  A  y  e.  ( `' F " B ) ) )
2115, 20ax-mp 5 . . . . . . 7  |-  ( y  e.  |^|_ x  e.  A  ( `' F " B )  ->  A. x  e.  A  y  e.  ( `' F " B ) )
2221adantl 454 . . . . . 6  |-  ( ( ( Fun  F  /\  A  =/=  (/) )  /\  y  e.  |^|_ x  e.  A  ( `' F " B ) )  ->  A. x  e.  A  y  e.  ( `' F " B ) )
23 fvimacnvi 5847 . . . . . . . 8  |-  ( ( Fun  F  /\  y  e.  ( `' F " B ) )  -> 
( F `  y
)  e.  B )
2423ex 425 . . . . . . 7  |-  ( Fun 
F  ->  ( y  e.  ( `' F " B )  ->  ( F `  y )  e.  B ) )
2524ralimdv 2787 . . . . . 6  |-  ( Fun 
F  ->  ( A. x  e.  A  y  e.  ( `' F " B )  ->  A. x  e.  A  ( F `  y )  e.  B
) )
2619, 22, 25sylc 59 . . . . 5  |-  ( ( ( Fun  F  /\  A  =/=  (/) )  /\  y  e.  |^|_ x  e.  A  ( `' F " B ) )  ->  A. x  e.  A  ( F `  y )  e.  B
)
275, 8ax-mp 5 . . . . 5  |-  ( ( F `  y )  e.  |^|_ x  e.  A  B 
<-> 
A. x  e.  A  ( F `  y )  e.  B )
2826, 27sylibr 205 . . . 4  |-  ( ( ( Fun  F  /\  A  =/=  (/) )  /\  y  e.  |^|_ x  e.  A  ( `' F " B ) )  ->  ( F `  y )  e.  |^|_ x  e.  A  B )
29 r19.2zb 3720 . . . . . . . . . 10  |-  ( A  =/=  (/)  <->  ( A. x  e.  A  y  e.  ( `' F " B )  ->  E. x  e.  A  y  e.  ( `' F " B ) ) )
3029biimpi 188 . . . . . . . . 9  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  y  e.  ( `' F " B )  ->  E. x  e.  A  y  e.  ( `' F " B ) ) )
31 cnvimass 5227 . . . . . . . . . . 11  |-  ( `' F " B ) 
C_  dom  F
3231sseli 3346 . . . . . . . . . 10  |-  ( y  e.  ( `' F " B )  ->  y  e.  dom  F )
3332rexlimivw 2828 . . . . . . . . 9  |-  ( E. x  e.  A  y  e.  ( `' F " B )  ->  y  e.  dom  F )
3430, 33syl6 32 . . . . . . . 8  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  y  e.  ( `' F " B )  ->  y  e.  dom  F ) )
3517, 34syl5bi 210 . . . . . . 7  |-  ( A  =/=  (/)  ->  ( y  e.  |^|_ x  e.  A  ( `' F " B )  ->  y  e.  dom  F ) )
3635adantl 454 . . . . . 6  |-  ( ( Fun  F  /\  A  =/=  (/) )  ->  (
y  e.  |^|_ x  e.  A  ( `' F " B )  -> 
y  e.  dom  F
) )
3736imp 420 . . . . 5  |-  ( ( ( Fun  F  /\  A  =/=  (/) )  /\  y  e.  |^|_ x  e.  A  ( `' F " B ) )  ->  y  e.  dom  F )
38 fvimacnv 5848 . . . . 5  |-  ( ( Fun  F  /\  y  e.  dom  F )  -> 
( ( F `  y )  e.  |^|_ x  e.  A  B  <->  y  e.  ( `' F " |^|_ x  e.  A  B )
) )
3919, 37, 38syl2anc 644 . . . 4  |-  ( ( ( Fun  F  /\  A  =/=  (/) )  /\  y  e.  |^|_ x  e.  A  ( `' F " B ) )  ->  ( ( F `  y )  e.  |^|_ x  e.  A  B 
<->  y  e.  ( `' F " |^|_ x  e.  A  B )
) )
4028, 39mpbid 203 . . 3  |-  ( ( ( Fun  F  /\  A  =/=  (/) )  /\  y  e.  |^|_ x  e.  A  ( `' F " B ) )  ->  y  e.  ( `' F " |^|_ x  e.  A  B )
)
4118, 40impbida 807 . 2  |-  ( ( Fun  F  /\  A  =/=  (/) )  ->  (
y  e.  ( `' F " |^|_ x  e.  A  B )  <->  y  e.  |^|_ x  e.  A  ( `' F " B ) ) )
4241eqrdv 2436 1  |-  ( ( Fun  F  /\  A  =/=  (/) )  ->  ( `' F " |^|_ x  e.  A  B )  =  |^|_ x  e.  A  ( `' F " B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   E.wrex 2708   _Vcvv 2958   (/)c0 3630   |^|_ciin 4096   `'ccnv 4880   dom cdm 4881   "cima 4884   Fun wfun 5451   ` cfv 5457
This theorem is referenced by:  intpreima  5864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iin 4098  df-br 4216  df-opab 4270  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-fv 5465
  Copyright terms: Public domain W3C validator