MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinrab2 Unicode version

Theorem iinrab2 3981
Description: Indexed intersection of a restricted class builder. (Contributed by NM, 6-Dec-2011.)
Assertion
Ref Expression
iinrab2  |-  ( |^|_ x  e.  A  { y  e.  B  |  ph }  i^i  B )  =  { y  e.  B  |  A. x  e.  A  ph }
Distinct variable groups:    y, A, x    x, B, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem iinrab2
StepHypRef Expression
1 iineq1 3935 . . . . . 6  |-  ( A  =  (/)  ->  |^|_ x  e.  A  { y  e.  B  |  ph }  =  |^|_ x  e.  (/)  { y  e.  B  |  ph } )
2 0iin 3976 . . . . . 6  |-  |^|_ x  e.  (/)  { y  e.  B  |  ph }  =  _V
31, 2syl6eq 2344 . . . . 5  |-  ( A  =  (/)  ->  |^|_ x  e.  A  { y  e.  B  |  ph }  =  _V )
43ineq1d 3382 . . . 4  |-  ( A  =  (/)  ->  ( |^|_ x  e.  A  { y  e.  B  |  ph }  i^i  B )  =  ( _V  i^i  B
) )
5 incom 3374 . . . . 5  |-  ( _V 
i^i  B )  =  ( B  i^i  _V )
6 inv1 3494 . . . . 5  |-  ( B  i^i  _V )  =  B
75, 6eqtri 2316 . . . 4  |-  ( _V 
i^i  B )  =  B
84, 7syl6eq 2344 . . 3  |-  ( A  =  (/)  ->  ( |^|_ x  e.  A  { y  e.  B  |  ph }  i^i  B )  =  B )
9 rzal 3568 . . . 4  |-  ( A  =  (/)  ->  A. x  e.  A  A. y  e.  B  ph )
10 rabid2 2730 . . . . 5  |-  ( B  =  { y  e.  B  |  A. x  e.  A  ph }  <->  A. y  e.  B  A. x  e.  A  ph )
11 ralcom 2713 . . . . 5  |-  ( A. y  e.  B  A. x  e.  A  ph  <->  A. x  e.  A  A. y  e.  B  ph )
1210, 11bitr2i 241 . . . 4  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  B  =  { y  e.  B  |  A. x  e.  A  ph } )
139, 12sylib 188 . . 3  |-  ( A  =  (/)  ->  B  =  { y  e.  B  |  A. x  e.  A  ph } )
148, 13eqtrd 2328 . 2  |-  ( A  =  (/)  ->  ( |^|_ x  e.  A  { y  e.  B  |  ph }  i^i  B )  =  { y  e.  B  |  A. x  e.  A  ph } )
15 iinrab 3980 . . . 4  |-  ( A  =/=  (/)  ->  |^|_ x  e.  A  { y  e.  B  |  ph }  =  { y  e.  B  |  A. x  e.  A  ph } )
1615ineq1d 3382 . . 3  |-  ( A  =/=  (/)  ->  ( |^|_ x  e.  A  { y  e.  B  |  ph }  i^i  B )  =  ( { y  e.  B  |  A. x  e.  A  ph }  i^i  B ) )
17 ssrab2 3271 . . . 4  |-  { y  e.  B  |  A. x  e.  A  ph }  C_  B
18 dfss 3180 . . . 4  |-  ( { y  e.  B  |  A. x  e.  A  ph }  C_  B  <->  { y  e.  B  |  A. x  e.  A  ph }  =  ( { y  e.  B  |  A. x  e.  A  ph }  i^i  B ) )
1917, 18mpbi 199 . . 3  |-  { y  e.  B  |  A. x  e.  A  ph }  =  ( { y  e.  B  |  A. x  e.  A  ph }  i^i  B )
2016, 19syl6eqr 2346 . 2  |-  ( A  =/=  (/)  ->  ( |^|_ x  e.  A  { y  e.  B  |  ph }  i^i  B )  =  { y  e.  B  |  A. x  e.  A  ph } )
2114, 20pm2.61ine 2535 1  |-  ( |^|_ x  e.  A  { y  e.  B  |  ph }  i^i  B )  =  { y  e.  B  |  A. x  e.  A  ph }
Colors of variables: wff set class
Syntax hints:    = wceq 1632    =/= wne 2459   A.wral 2556   {crab 2560   _Vcvv 2801    i^i cin 3164    C_ wss 3165   (/)c0 3468   |^|_ciin 3922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rab 2565  df-v 2803  df-dif 3168  df-in 3172  df-ss 3179  df-nul 3469  df-iin 3924
  Copyright terms: Public domain W3C validator