MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinrab2 Structured version   Unicode version

Theorem iinrab2 4156
Description: Indexed intersection of a restricted class builder. (Contributed by NM, 6-Dec-2011.)
Assertion
Ref Expression
iinrab2  |-  ( |^|_ x  e.  A  { y  e.  B  |  ph }  i^i  B )  =  { y  e.  B  |  A. x  e.  A  ph }
Distinct variable groups:    y, A, x    x, B, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem iinrab2
StepHypRef Expression
1 iineq1 4109 . . . . . 6  |-  ( A  =  (/)  ->  |^|_ x  e.  A  { y  e.  B  |  ph }  =  |^|_ x  e.  (/)  { y  e.  B  |  ph } )
2 0iin 4151 . . . . . 6  |-  |^|_ x  e.  (/)  { y  e.  B  |  ph }  =  _V
31, 2syl6eq 2486 . . . . 5  |-  ( A  =  (/)  ->  |^|_ x  e.  A  { y  e.  B  |  ph }  =  _V )
43ineq1d 3543 . . . 4  |-  ( A  =  (/)  ->  ( |^|_ x  e.  A  { y  e.  B  |  ph }  i^i  B )  =  ( _V  i^i  B
) )
5 incom 3535 . . . . 5  |-  ( _V 
i^i  B )  =  ( B  i^i  _V )
6 inv1 3656 . . . . 5  |-  ( B  i^i  _V )  =  B
75, 6eqtri 2458 . . . 4  |-  ( _V 
i^i  B )  =  B
84, 7syl6eq 2486 . . 3  |-  ( A  =  (/)  ->  ( |^|_ x  e.  A  { y  e.  B  |  ph }  i^i  B )  =  B )
9 rzal 3731 . . . 4  |-  ( A  =  (/)  ->  A. x  e.  A  A. y  e.  B  ph )
10 rabid2 2887 . . . . 5  |-  ( B  =  { y  e.  B  |  A. x  e.  A  ph }  <->  A. y  e.  B  A. x  e.  A  ph )
11 ralcom 2870 . . . . 5  |-  ( A. y  e.  B  A. x  e.  A  ph  <->  A. x  e.  A  A. y  e.  B  ph )
1210, 11bitr2i 243 . . . 4  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  B  =  { y  e.  B  |  A. x  e.  A  ph } )
139, 12sylib 190 . . 3  |-  ( A  =  (/)  ->  B  =  { y  e.  B  |  A. x  e.  A  ph } )
148, 13eqtrd 2470 . 2  |-  ( A  =  (/)  ->  ( |^|_ x  e.  A  { y  e.  B  |  ph }  i^i  B )  =  { y  e.  B  |  A. x  e.  A  ph } )
15 iinrab 4155 . . . 4  |-  ( A  =/=  (/)  ->  |^|_ x  e.  A  { y  e.  B  |  ph }  =  { y  e.  B  |  A. x  e.  A  ph } )
1615ineq1d 3543 . . 3  |-  ( A  =/=  (/)  ->  ( |^|_ x  e.  A  { y  e.  B  |  ph }  i^i  B )  =  ( { y  e.  B  |  A. x  e.  A  ph }  i^i  B ) )
17 ssrab2 3430 . . . 4  |-  { y  e.  B  |  A. x  e.  A  ph }  C_  B
18 dfss 3337 . . . 4  |-  ( { y  e.  B  |  A. x  e.  A  ph }  C_  B  <->  { y  e.  B  |  A. x  e.  A  ph }  =  ( { y  e.  B  |  A. x  e.  A  ph }  i^i  B ) )
1917, 18mpbi 201 . . 3  |-  { y  e.  B  |  A. x  e.  A  ph }  =  ( { y  e.  B  |  A. x  e.  A  ph }  i^i  B )
2016, 19syl6eqr 2488 . 2  |-  ( A  =/=  (/)  ->  ( |^|_ x  e.  A  { y  e.  B  |  ph }  i^i  B )  =  { y  e.  B  |  A. x  e.  A  ph } )
2114, 20pm2.61ine 2682 1  |-  ( |^|_ x  e.  A  { y  e.  B  |  ph }  i^i  B )  =  { y  e.  B  |  A. x  e.  A  ph }
Colors of variables: wff set class
Syntax hints:    = wceq 1653    =/= wne 2601   A.wral 2707   {crab 2711   _Vcvv 2958    i^i cin 3321    C_ wss 3322   (/)c0 3630   |^|_ciin 4096
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rab 2716  df-v 2960  df-dif 3325  df-in 3329  df-ss 3336  df-nul 3631  df-iin 4098
  Copyright terms: Public domain W3C validator