MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinun2 Unicode version

Theorem iinun2 3984
Description: Indexed intersection of union. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use intiin 3972 to recover Enderton's theorem. (Contributed by NM, 19-Aug-2004.)
Assertion
Ref Expression
iinun2  |-  |^|_ x  e.  A  ( B  u.  C )  =  ( B  u.  |^|_ x  e.  A  C )
Distinct variable group:    x, B
Allowed substitution hints:    A( x)    C( x)

Proof of Theorem iinun2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 r19.32v 2699 . . . 4  |-  ( A. x  e.  A  (
y  e.  B  \/  y  e.  C )  <->  ( y  e.  B  \/  A. x  e.  A  y  e.  C ) )
2 elun 3329 . . . . 5  |-  ( y  e.  ( B  u.  C )  <->  ( y  e.  B  \/  y  e.  C ) )
32ralbii 2580 . . . 4  |-  ( A. x  e.  A  y  e.  ( B  u.  C
)  <->  A. x  e.  A  ( y  e.  B  \/  y  e.  C
) )
4 vex 2804 . . . . . 6  |-  y  e. 
_V
5 eliin 3926 . . . . . 6  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  A  C  <->  A. x  e.  A  y  e.  C ) )
64, 5ax-mp 8 . . . . 5  |-  ( y  e.  |^|_ x  e.  A  C 
<-> 
A. x  e.  A  y  e.  C )
76orbi2i 505 . . . 4  |-  ( ( y  e.  B  \/  y  e.  |^|_ x  e.  A  C )  <->  ( y  e.  B  \/  A. x  e.  A  y  e.  C ) )
81, 3, 73bitr4i 268 . . 3  |-  ( A. x  e.  A  y  e.  ( B  u.  C
)  <->  ( y  e.  B  \/  y  e. 
|^|_ x  e.  A  C ) )
9 eliin 3926 . . . 4  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  A  ( B  u.  C )  <->  A. x  e.  A  y  e.  ( B  u.  C
) ) )
104, 9ax-mp 8 . . 3  |-  ( y  e.  |^|_ x  e.  A  ( B  u.  C
)  <->  A. x  e.  A  y  e.  ( B  u.  C ) )
11 elun 3329 . . 3  |-  ( y  e.  ( B  u.  |^|_
x  e.  A  C
)  <->  ( y  e.  B  \/  y  e. 
|^|_ x  e.  A  C ) )
128, 10, 113bitr4i 268 . 2  |-  ( y  e.  |^|_ x  e.  A  ( B  u.  C
)  <->  y  e.  ( B  u.  |^|_ x  e.  A  C )
)
1312eqriv 2293 1  |-  |^|_ x  e.  A  ( B  u.  C )  =  ( B  u.  |^|_ x  e.  A  C )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    \/ wo 357    = wceq 1632    e. wcel 1696   A.wral 2556   _Vcvv 2801    u. cun 3163   |^|_ciin 3922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-v 2803  df-un 3170  df-iin 3924
  Copyright terms: Public domain W3C validator