MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinxprg Structured version   Unicode version

Theorem iinxprg 4160
Description: Indexed intersection with an unordered pair index. (Contributed by NM, 25-Jan-2012.)
Hypotheses
Ref Expression
iinxprg.1  |-  ( x  =  A  ->  C  =  D )
iinxprg.2  |-  ( x  =  B  ->  C  =  E )
Assertion
Ref Expression
iinxprg  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
|^|_ x  e.  { A ,  B } C  =  ( D  i^i  E
) )
Distinct variable groups:    x, A    x, B    x, D    x, E
Allowed substitution hints:    C( x)    V( x)    W( x)

Proof of Theorem iinxprg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 iinxprg.1 . . . . 5  |-  ( x  =  A  ->  C  =  D )
21eleq2d 2502 . . . 4  |-  ( x  =  A  ->  (
y  e.  C  <->  y  e.  D ) )
3 iinxprg.2 . . . . 5  |-  ( x  =  B  ->  C  =  E )
43eleq2d 2502 . . . 4  |-  ( x  =  B  ->  (
y  e.  C  <->  y  e.  E ) )
52, 4ralprg 3849 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A. x  e. 
{ A ,  B } y  e.  C  <->  ( y  e.  D  /\  y  e.  E )
) )
65abbidv 2549 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { y  |  A. x  e.  { A ,  B } y  e.  C }  =  {
y  |  ( y  e.  D  /\  y  e.  E ) } )
7 df-iin 4088 . 2  |-  |^|_ x  e.  { A ,  B } C  =  {
y  |  A. x  e.  { A ,  B } y  e.  C }
8 df-in 3319 . 2  |-  ( D  i^i  E )  =  { y  |  ( y  e.  D  /\  y  e.  E ) }
96, 7, 83eqtr4g 2492 1  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
|^|_ x  e.  { A ,  B } C  =  ( D  i^i  E
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   {cab 2421   A.wral 2697    i^i cin 3311   {cpr 3807   |^|_ciin 4086
This theorem is referenced by:  pmapmeet  30507  diameetN  31791  dihmeetlem2N  32034  dihmeetcN  32037  dihmeet  32078
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-v 2950  df-sbc 3154  df-un 3317  df-in 3319  df-sn 3812  df-pr 3813  df-iin 4088
  Copyright terms: Public domain W3C validator