MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinxsng Structured version   Unicode version

Theorem iinxsng 4167
Description: A singleton index picks out an instance of an indexed intersection's argument. (Contributed by NM, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
Hypothesis
Ref Expression
iinxsng.1  |-  ( x  =  A  ->  B  =  C )
Assertion
Ref Expression
iinxsng  |-  ( A  e.  V  ->  |^|_ x  e.  { A } B  =  C )
Distinct variable groups:    x, A    x, C
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem iinxsng
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-iin 4096 . 2  |-  |^|_ x  e.  { A } B  =  { y  |  A. x  e.  { A } y  e.  B }
2 iinxsng.1 . . . . 5  |-  ( x  =  A  ->  B  =  C )
32eleq2d 2503 . . . 4  |-  ( x  =  A  ->  (
y  e.  B  <->  y  e.  C ) )
43ralsng 3846 . . 3  |-  ( A  e.  V  ->  ( A. x  e.  { A } y  e.  B  <->  y  e.  C ) )
54abbi1dv 2552 . 2  |-  ( A  e.  V  ->  { y  |  A. x  e. 
{ A } y  e.  B }  =  C )
61, 5syl5eq 2480 1  |-  ( A  e.  V  ->  |^|_ x  e.  { A } B  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1652    e. wcel 1725   {cab 2422   A.wral 2705   {csn 3814   |^|_ciin 4094
This theorem is referenced by:  polatN  30728
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ral 2710  df-v 2958  df-sbc 3162  df-sn 3820  df-iin 4096
  Copyright terms: Public domain W3C validator