MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imacmp Unicode version

Theorem imacmp 17382
Description: The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 18-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
imacmp  |-  ( ( F  e.  ( J  Cn  K )  /\  ( Jt  A )  e.  Comp )  ->  ( Kt  ( F
" A ) )  e.  Comp )

Proof of Theorem imacmp
StepHypRef Expression
1 df-ima 4831 . . 3  |-  ( F
" A )  =  ran  ( F  |`  A )
21oveq2i 6031 . 2  |-  ( Kt  ( F " A ) )  =  ( Kt  ran  ( F  |`  A ) )
3 simpr 448 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  ( Jt  A )  e.  Comp )  ->  ( Jt  A )  e.  Comp )
4 simpl 444 . . . . 5  |-  ( ( F  e.  ( J  Cn  K )  /\  ( Jt  A )  e.  Comp )  ->  F  e.  ( J  Cn  K ) )
5 inss2 3505 . . . . 5  |-  ( A  i^i  U. J ) 
C_  U. J
6 eqid 2387 . . . . . 6  |-  U. J  =  U. J
76cnrest 17271 . . . . 5  |-  ( ( F  e.  ( J  Cn  K )  /\  ( A  i^i  U. J
)  C_  U. J )  ->  ( F  |`  ( A  i^i  U. J
) )  e.  ( ( Jt  ( A  i^i  U. J ) )  Cn  K ) )
84, 5, 7sylancl 644 . . . 4  |-  ( ( F  e.  ( J  Cn  K )  /\  ( Jt  A )  e.  Comp )  ->  ( F  |`  ( A  i^i  U. J
) )  e.  ( ( Jt  ( A  i^i  U. J ) )  Cn  K ) )
9 resdmres 5301 . . . . 5  |-  ( F  |`  dom  ( F  |`  A ) )  =  ( F  |`  A )
10 dmres 5107 . . . . . . 7  |-  dom  ( F  |`  A )  =  ( A  i^i  dom  F )
11 eqid 2387 . . . . . . . . . 10  |-  U. K  =  U. K
126, 11cnf 17232 . . . . . . . . 9  |-  ( F  e.  ( J  Cn  K )  ->  F : U. J --> U. K
)
13 fdm 5535 . . . . . . . . 9  |-  ( F : U. J --> U. K  ->  dom  F  =  U. J )
144, 12, 133syl 19 . . . . . . . 8  |-  ( ( F  e.  ( J  Cn  K )  /\  ( Jt  A )  e.  Comp )  ->  dom  F  =  U. J )
1514ineq2d 3485 . . . . . . 7  |-  ( ( F  e.  ( J  Cn  K )  /\  ( Jt  A )  e.  Comp )  ->  ( A  i^i  dom 
F )  =  ( A  i^i  U. J
) )
1610, 15syl5eq 2431 . . . . . 6  |-  ( ( F  e.  ( J  Cn  K )  /\  ( Jt  A )  e.  Comp )  ->  dom  ( F  |`  A )  =  ( A  i^i  U. J
) )
1716reseq2d 5086 . . . . 5  |-  ( ( F  e.  ( J  Cn  K )  /\  ( Jt  A )  e.  Comp )  ->  ( F  |`  dom  ( F  |`  A ) )  =  ( F  |`  ( A  i^i  U. J ) ) )
189, 17syl5eqr 2433 . . . 4  |-  ( ( F  e.  ( J  Cn  K )  /\  ( Jt  A )  e.  Comp )  ->  ( F  |`  A )  =  ( F  |`  ( A  i^i  U. J ) ) )
19 cmptop 17380 . . . . . . 7  |-  ( ( Jt  A )  e.  Comp  -> 
( Jt  A )  e.  Top )
2019adantl 453 . . . . . 6  |-  ( ( F  e.  ( J  Cn  K )  /\  ( Jt  A )  e.  Comp )  ->  ( Jt  A )  e.  Top )
21 restrcl 17143 . . . . . 6  |-  ( ( Jt  A )  e.  Top  ->  ( J  e.  _V  /\  A  e.  _V )
)
226restin 17152 . . . . . 6  |-  ( ( J  e.  _V  /\  A  e.  _V )  ->  ( Jt  A )  =  ( Jt  ( A  i^i  U. J ) ) )
2320, 21, 223syl 19 . . . . 5  |-  ( ( F  e.  ( J  Cn  K )  /\  ( Jt  A )  e.  Comp )  ->  ( Jt  A )  =  ( Jt  ( A  i^i  U. J ) ) )
2423oveq1d 6035 . . . 4  |-  ( ( F  e.  ( J  Cn  K )  /\  ( Jt  A )  e.  Comp )  ->  ( ( Jt  A )  Cn  K )  =  ( ( Jt  ( A  i^i  U. J
) )  Cn  K
) )
258, 18, 243eltr4d 2468 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  ( Jt  A )  e.  Comp )  ->  ( F  |`  A )  e.  ( ( Jt  A )  Cn  K
) )
26 rncmp 17381 . . 3  |-  ( ( ( Jt  A )  e.  Comp  /\  ( F  |`  A )  e.  ( ( Jt  A )  Cn  K ) )  ->  ( Kt  ran  ( F  |`  A ) )  e.  Comp )
273, 25, 26syl2anc 643 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  ( Jt  A )  e.  Comp )  ->  ( Kt  ran  ( F  |`  A ) )  e.  Comp )
282, 27syl5eqel 2471 1  |-  ( ( F  e.  ( J  Cn  K )  /\  ( Jt  A )  e.  Comp )  ->  ( Kt  ( F
" A ) )  e.  Comp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   _Vcvv 2899    i^i cin 3262    C_ wss 3263   U.cuni 3957   dom cdm 4818   ran crn 4819    |` cres 4820   "cima 4821   -->wf 5390  (class class class)co 6020   ↾t crest 13575   Topctop 16881    Cn ccn 17210   Compccmp 17371
This theorem is referenced by:  kgencn3  17511  txkgen  17605  xkoco1cn  17610  xkococnlem  17612  cmphaushmeo  17753  cnheiborlem  18850
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-recs 6569  df-rdg 6604  df-1o 6660  df-oadd 6664  df-er 6841  df-map 6956  df-en 7046  df-dom 7047  df-fin 7049  df-fi 7351  df-rest 13577  df-topgen 13594  df-top 16886  df-bases 16888  df-topon 16889  df-cn 17213  df-cmp 17372
  Copyright terms: Public domain W3C validator