MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaco Structured version   Unicode version

Theorem imaco 5375
Description: Image of the composition of two classes. (Contributed by Jason Orendorff, 12-Dec-2006.)
Assertion
Ref Expression
imaco  |-  ( ( A  o.  B )
" C )  =  ( A " ( B " C ) )

Proof of Theorem imaco
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rex 2711 . . 3  |-  ( E. y  e.  ( B
" C ) y A x  <->  E. y
( y  e.  ( B " C )  /\  y A x ) )
2 vex 2959 . . . 4  |-  x  e. 
_V
32elima 5208 . . 3  |-  ( x  e.  ( A "
( B " C
) )  <->  E. y  e.  ( B " C
) y A x )
4 rexcom4 2975 . . . . 5  |-  ( E. z  e.  C  E. y ( z B y  /\  y A x )  <->  E. y E. z  e.  C  ( z B y  /\  y A x ) )
5 r19.41v 2861 . . . . . 6  |-  ( E. z  e.  C  ( z B y  /\  y A x )  <->  ( E. z  e.  C  z B y  /\  y A x ) )
65exbii 1592 . . . . 5  |-  ( E. y E. z  e.  C  ( z B y  /\  y A x )  <->  E. y
( E. z  e.  C  z B y  /\  y A x ) )
74, 6bitri 241 . . . 4  |-  ( E. z  e.  C  E. y ( z B y  /\  y A x )  <->  E. y
( E. z  e.  C  z B y  /\  y A x ) )
82elima 5208 . . . . 5  |-  ( x  e.  ( ( A  o.  B ) " C )  <->  E. z  e.  C  z ( A  o.  B )
x )
9 vex 2959 . . . . . . 7  |-  z  e. 
_V
109, 2brco 5043 . . . . . 6  |-  ( z ( A  o.  B
) x  <->  E. y
( z B y  /\  y A x ) )
1110rexbii 2730 . . . . 5  |-  ( E. z  e.  C  z ( A  o.  B
) x  <->  E. z  e.  C  E. y
( z B y  /\  y A x ) )
128, 11bitri 241 . . . 4  |-  ( x  e.  ( ( A  o.  B ) " C )  <->  E. z  e.  C  E. y
( z B y  /\  y A x ) )
13 vex 2959 . . . . . . 7  |-  y  e. 
_V
1413elima 5208 . . . . . 6  |-  ( y  e.  ( B " C )  <->  E. z  e.  C  z B
y )
1514anbi1i 677 . . . . 5  |-  ( ( y  e.  ( B
" C )  /\  y A x )  <->  ( E. z  e.  C  z B y  /\  y A x ) )
1615exbii 1592 . . . 4  |-  ( E. y ( y  e.  ( B " C
)  /\  y A x )  <->  E. y
( E. z  e.  C  z B y  /\  y A x ) )
177, 12, 163bitr4i 269 . . 3  |-  ( x  e.  ( ( A  o.  B ) " C )  <->  E. y
( y  e.  ( B " C )  /\  y A x ) )
181, 3, 173bitr4ri 270 . 2  |-  ( x  e.  ( ( A  o.  B ) " C )  <->  x  e.  ( A " ( B
" C ) ) )
1918eqriv 2433 1  |-  ( ( A  o.  B )
" C )  =  ( A " ( B " C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   E.wrex 2706   class class class wbr 4212   "cima 4881    o. ccom 4882
This theorem is referenced by:  fvco2  5798  suppfif1  7400  fipreima  7412  mapfien  7653  gsumval3  15514  gsumzf1o  15519  dprdf1o  15590  cnco  17330  cnpco  17331  ptrescn  17671  xkoco1cn  17689  xkoco2cn  17690  xkococnlem  17691  qtopcn  17746  fmco  17993  uniioombllem3  19477  cncombf  19550  deg1val  20019  ofpreima  24081  mbfmco  24614  erdsze2lem2  24890  cvmliftmolem1  24968  cvmlift2lem9a  24990  cvmlift2lem9  24998  cnambfre  26255  ftc1anclem3  26282  frlmup3  27229  f1lindf  27269  lindfmm  27274  psgnunilem1  27393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-br 4213  df-opab 4267  df-xp 4884  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891
  Copyright terms: Public domain W3C validator