MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imadif Unicode version

Theorem imadif 5343
Description: The image of a difference is the difference of images. (Contributed by NM, 24-May-1998.)
Assertion
Ref Expression
imadif  |-  ( Fun  `' F  ->  ( F
" ( A  \  B ) )  =  ( ( F " A )  \  ( F " B ) ) )

Proof of Theorem imadif
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 anandir 802 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  -.  x  e.  B
)  /\  x F
y )  <->  ( (
x  e.  A  /\  x F y )  /\  ( -.  x  e.  B  /\  x F y ) ) )
21exbii 1572 . . . . . . 7  |-  ( E. x ( ( x  e.  A  /\  -.  x  e.  B )  /\  x F y )  <->  E. x ( ( x  e.  A  /\  x F y )  /\  ( -.  x  e.  B  /\  x F y ) ) )
3 19.40 1599 . . . . . . 7  |-  ( E. x ( ( x  e.  A  /\  x F y )  /\  ( -.  x  e.  B  /\  x F y ) )  ->  ( E. x ( x  e.  A  /\  x F y )  /\  E. x ( -.  x  e.  B  /\  x F y ) ) )
42, 3sylbi 187 . . . . . 6  |-  ( E. x ( ( x  e.  A  /\  -.  x  e.  B )  /\  x F y )  ->  ( E. x
( x  e.  A  /\  x F y )  /\  E. x ( -.  x  e.  B  /\  x F y ) ) )
5 nfv 1609 . . . . . . . . . . 11  |-  F/ x Fun  `' F
6 nfe1 1718 . . . . . . . . . . 11  |-  F/ x E. x ( x F y  /\  -.  x  e.  B )
75, 6nfan 1783 . . . . . . . . . 10  |-  F/ x
( Fun  `' F  /\  E. x ( x F y  /\  -.  x  e.  B )
)
8 funmo 5287 . . . . . . . . . . . . . 14  |-  ( Fun  `' F  ->  E* x  y `' F x )
9 vex 2804 . . . . . . . . . . . . . . . 16  |-  y  e. 
_V
10 vex 2804 . . . . . . . . . . . . . . . 16  |-  x  e. 
_V
119, 10brcnv 4880 . . . . . . . . . . . . . . 15  |-  ( y `' F x  <->  x F
y )
1211mobii 2192 . . . . . . . . . . . . . 14  |-  ( E* x  y `' F x 
<->  E* x  x F y )
138, 12sylib 188 . . . . . . . . . . . . 13  |-  ( Fun  `' F  ->  E* x  x F y )
14 mopick 2218 . . . . . . . . . . . . 13  |-  ( ( E* x  x F y  /\  E. x
( x F y  /\  -.  x  e.  B ) )  -> 
( x F y  ->  -.  x  e.  B ) )
1513, 14sylan 457 . . . . . . . . . . . 12  |-  ( ( Fun  `' F  /\  E. x ( x F y  /\  -.  x  e.  B ) )  -> 
( x F y  ->  -.  x  e.  B ) )
1615con2d 107 . . . . . . . . . . 11  |-  ( ( Fun  `' F  /\  E. x ( x F y  /\  -.  x  e.  B ) )  -> 
( x  e.  B  ->  -.  x F y ) )
17 imnan 411 . . . . . . . . . . 11  |-  ( ( x  e.  B  ->  -.  x F y )  <->  -.  ( x  e.  B  /\  x F y ) )
1816, 17sylib 188 . . . . . . . . . 10  |-  ( ( Fun  `' F  /\  E. x ( x F y  /\  -.  x  e.  B ) )  ->  -.  ( x  e.  B  /\  x F y ) )
197, 18alrimi 1757 . . . . . . . . 9  |-  ( ( Fun  `' F  /\  E. x ( x F y  /\  -.  x  e.  B ) )  ->  A. x  -.  (
x  e.  B  /\  x F y ) )
2019ex 423 . . . . . . . 8  |-  ( Fun  `' F  ->  ( E. x ( x F y  /\  -.  x  e.  B )  ->  A. x  -.  ( x  e.  B  /\  x F y ) ) )
21 exancom 1576 . . . . . . . 8  |-  ( E. x ( x F y  /\  -.  x  e.  B )  <->  E. x
( -.  x  e.  B  /\  x F y ) )
22 alnex 1533 . . . . . . . 8  |-  ( A. x  -.  ( x  e.  B  /\  x F y )  <->  -.  E. x
( x  e.  B  /\  x F y ) )
2320, 21, 223imtr3g 260 . . . . . . 7  |-  ( Fun  `' F  ->  ( E. x ( -.  x  e.  B  /\  x F y )  ->  -.  E. x ( x  e.  B  /\  x F y ) ) )
2423anim2d 548 . . . . . 6  |-  ( Fun  `' F  ->  ( ( E. x ( x  e.  A  /\  x F y )  /\  E. x ( -.  x  e.  B  /\  x F y ) )  ->  ( E. x
( x  e.  A  /\  x F y )  /\  -.  E. x
( x  e.  B  /\  x F y ) ) ) )
254, 24syl5 28 . . . . 5  |-  ( Fun  `' F  ->  ( E. x ( ( x  e.  A  /\  -.  x  e.  B )  /\  x F y )  ->  ( E. x
( x  e.  A  /\  x F y )  /\  -.  E. x
( x  e.  B  /\  x F y ) ) ) )
26 19.29r 1587 . . . . . . 7  |-  ( ( E. x ( x  e.  A  /\  x F y )  /\  A. x  -.  ( x  e.  B  /\  x F y ) )  ->  E. x ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) ) )
2722, 26sylan2br 462 . . . . . 6  |-  ( ( E. x ( x  e.  A  /\  x F y )  /\  -.  E. x ( x  e.  B  /\  x F y ) )  ->  E. x ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) ) )
28 andi 837 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  x F y )  /\  ( -.  x  e.  B  \/  -.  x F y ) )  <-> 
( ( ( x  e.  A  /\  x F y )  /\  -.  x  e.  B
)  \/  ( ( x  e.  A  /\  x F y )  /\  -.  x F y ) ) )
29 ianor 474 . . . . . . . . 9  |-  ( -.  ( x  e.  B  /\  x F y )  <-> 
( -.  x  e.  B  \/  -.  x F y ) )
3029anbi2i 675 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) )  <-> 
( ( x  e.  A  /\  x F y )  /\  ( -.  x  e.  B  \/  -.  x F y ) ) )
31 an32 773 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  -.  x  e.  B
)  /\  x F
y )  <->  ( (
x  e.  A  /\  x F y )  /\  -.  x  e.  B
) )
32 pm3.24 852 . . . . . . . . . . . 12  |-  -.  (
x F y  /\  -.  x F y )
3332intnan 880 . . . . . . . . . . 11  |-  -.  (
x  e.  A  /\  ( x F y  /\  -.  x F y ) )
34 anass 630 . . . . . . . . . . 11  |-  ( ( ( x  e.  A  /\  x F y )  /\  -.  x F y )  <->  ( x  e.  A  /\  (
x F y  /\  -.  x F y ) ) )
3533, 34mtbir 290 . . . . . . . . . 10  |-  -.  (
( x  e.  A  /\  x F y )  /\  -.  x F y )
3635biorfi 396 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  x F y )  /\  -.  x  e.  B )  <->  ( (
( x  e.  A  /\  x F y )  /\  -.  x  e.  B )  \/  (
( x  e.  A  /\  x F y )  /\  -.  x F y ) ) )
3731, 36bitri 240 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  -.  x  e.  B
)  /\  x F
y )  <->  ( (
( x  e.  A  /\  x F y )  /\  -.  x  e.  B )  \/  (
( x  e.  A  /\  x F y )  /\  -.  x F y ) ) )
3828, 30, 373bitr4i 268 . . . . . . 7  |-  ( ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) )  <-> 
( ( x  e.  A  /\  -.  x  e.  B )  /\  x F y ) )
3938exbii 1572 . . . . . 6  |-  ( E. x ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) )  <->  E. x ( ( x  e.  A  /\  -.  x  e.  B
)  /\  x F
y ) )
4027, 39sylib 188 . . . . 5  |-  ( ( E. x ( x  e.  A  /\  x F y )  /\  -.  E. x ( x  e.  B  /\  x F y ) )  ->  E. x ( ( x  e.  A  /\  -.  x  e.  B
)  /\  x F
y ) )
4125, 40impbid1 194 . . . 4  |-  ( Fun  `' F  ->  ( E. x ( ( x  e.  A  /\  -.  x  e.  B )  /\  x F y )  <-> 
( E. x ( x  e.  A  /\  x F y )  /\  -.  E. x ( x  e.  B  /\  x F y ) ) ) )
42 eldif 3175 . . . . . 6  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
4342anbi1i 676 . . . . 5  |-  ( ( x  e.  ( A 
\  B )  /\  x F y )  <->  ( (
x  e.  A  /\  -.  x  e.  B
)  /\  x F
y ) )
4443exbii 1572 . . . 4  |-  ( E. x ( x  e.  ( A  \  B
)  /\  x F
y )  <->  E. x
( ( x  e.  A  /\  -.  x  e.  B )  /\  x F y ) )
459elima2 5034 . . . . 5  |-  ( y  e.  ( F " A )  <->  E. x
( x  e.  A  /\  x F y ) )
469elima2 5034 . . . . . 6  |-  ( y  e.  ( F " B )  <->  E. x
( x  e.  B  /\  x F y ) )
4746notbii 287 . . . . 5  |-  ( -.  y  e.  ( F
" B )  <->  -.  E. x
( x  e.  B  /\  x F y ) )
4845, 47anbi12i 678 . . . 4  |-  ( ( y  e.  ( F
" A )  /\  -.  y  e.  ( F " B ) )  <-> 
( E. x ( x  e.  A  /\  x F y )  /\  -.  E. x ( x  e.  B  /\  x F y ) ) )
4941, 44, 483bitr4g 279 . . 3  |-  ( Fun  `' F  ->  ( E. x ( x  e.  ( A  \  B
)  /\  x F
y )  <->  ( y  e.  ( F " A
)  /\  -.  y  e.  ( F " B
) ) ) )
509elima2 5034 . . 3  |-  ( y  e.  ( F "
( A  \  B
) )  <->  E. x
( x  e.  ( A  \  B )  /\  x F y ) )
51 eldif 3175 . . 3  |-  ( y  e.  ( ( F
" A )  \ 
( F " B
) )  <->  ( y  e.  ( F " A
)  /\  -.  y  e.  ( F " B
) ) )
5249, 50, 513bitr4g 279 . 2  |-  ( Fun  `' F  ->  ( y  e.  ( F "
( A  \  B
) )  <->  y  e.  ( ( F " A )  \  ( F " B ) ) ) )
5352eqrdv 2294 1  |-  ( Fun  `' F  ->  ( F
" ( A  \  B ) )  =  ( ( F " A )  \  ( F " B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357    /\ wa 358   A.wal 1530   E.wex 1531    = wceq 1632    e. wcel 1696   E*wmo 2157    \ cdif 3162   class class class wbr 4039   `'ccnv 4704   "cima 4708   Fun wfun 5265
This theorem is referenced by:  imain  5344  resdif  5510  difpreima  5669  domunsncan  6978  phplem4  7059  php3  7063  infdifsn  7373  cantnfp1lem3  7398  mapfien  7415  enfin1ai  8026  fin1a2lem7  8048  dprdf1o  15283  cnclima  17013  iscncl  17014  qtopcld  17420  qtoprest  17424  qtopcmap  17426  mbfimaicc  19004  ismbf3d  19025  i1fd  19052  ballotlemfrc  23101  frlmlbs  27352  f1lindf  27395
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-fun 5273
  Copyright terms: Public domain W3C validator