Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imadifxp Structured version   Unicode version

Theorem imadifxp 24040
Description: Image of the difference with a cross product (Contributed by Thierry Arnoux, 13-Dec-2017.)
Assertion
Ref Expression
imadifxp  |-  ( C 
C_  A  ->  (
( R  \  ( A  X.  B ) )
" C )  =  ( ( R " C )  \  B
) )

Proof of Theorem imadifxp
StepHypRef Expression
1 ima0 5223 . . . 4  |-  ( ( R  \  ( A  X.  B ) )
" (/) )  =  (/)
2 imaeq2 5201 . . . 4  |-  ( C  =  (/)  ->  ( ( R  \  ( A  X.  B ) )
" C )  =  ( ( R  \ 
( A  X.  B
) ) " (/) ) )
3 imaeq2 5201 . . . . . . 7  |-  ( C  =  (/)  ->  ( R
" C )  =  ( R " (/) ) )
4 ima0 5223 . . . . . . 7  |-  ( R
" (/) )  =  (/)
53, 4syl6eq 2486 . . . . . 6  |-  ( C  =  (/)  ->  ( R
" C )  =  (/) )
65difeq1d 3466 . . . . 5  |-  ( C  =  (/)  ->  ( ( R " C ) 
\  B )  =  ( (/)  \  B ) )
7 0dif 3701 . . . . 5  |-  ( (/)  \  B )  =  (/)
86, 7syl6eq 2486 . . . 4  |-  ( C  =  (/)  ->  ( ( R " C ) 
\  B )  =  (/) )
91, 2, 83eqtr4a 2496 . . 3  |-  ( C  =  (/)  ->  ( ( R  \  ( A  X.  B ) )
" C )  =  ( ( R " C )  \  B
) )
109adantl 454 . 2  |-  ( ( C  C_  A  /\  C  =  (/) )  -> 
( ( R  \ 
( A  X.  B
) ) " C
)  =  ( ( R " C ) 
\  B ) )
11 inundif 3708 . . . . . . . . 9  |-  ( ( R  i^i  ( A  X.  B ) )  u.  ( R  \ 
( A  X.  B
) ) )  =  R
1211imaeq1i 5202 . . . . . . . 8  |-  ( ( ( R  i^i  ( A  X.  B ) )  u.  ( R  \ 
( A  X.  B
) ) ) " C )  =  ( R " C )
13 imaundir 5287 . . . . . . . 8  |-  ( ( ( R  i^i  ( A  X.  B ) )  u.  ( R  \ 
( A  X.  B
) ) ) " C )  =  ( ( ( R  i^i  ( A  X.  B
) ) " C
)  u.  ( ( R  \  ( A  X.  B ) )
" C ) )
1412, 13eqtr3i 2460 . . . . . . 7  |-  ( R
" C )  =  ( ( ( R  i^i  ( A  X.  B ) ) " C )  u.  (
( R  \  ( A  X.  B ) )
" C ) )
1514difeq1i 3463 . . . . . 6  |-  ( ( R " C ) 
\  B )  =  ( ( ( ( R  i^i  ( A  X.  B ) )
" C )  u.  ( ( R  \ 
( A  X.  B
) ) " C
) )  \  B
)
16 difundir 3596 . . . . . 6  |-  ( ( ( ( R  i^i  ( A  X.  B
) ) " C
)  u.  ( ( R  \  ( A  X.  B ) )
" C ) ) 
\  B )  =  ( ( ( ( R  i^i  ( A  X.  B ) )
" C )  \  B )  u.  (
( ( R  \ 
( A  X.  B
) ) " C
)  \  B )
)
1715, 16eqtri 2458 . . . . 5  |-  ( ( R " C ) 
\  B )  =  ( ( ( ( R  i^i  ( A  X.  B ) )
" C )  \  B )  u.  (
( ( R  \ 
( A  X.  B
) ) " C
)  \  B )
)
18 inss2 3564 . . . . . . . . 9  |-  ( R  i^i  ( A  X.  B ) )  C_  ( A  X.  B
)
19 imass1 5241 . . . . . . . . 9  |-  ( ( R  i^i  ( A  X.  B ) ) 
C_  ( A  X.  B )  ->  (
( R  i^i  ( A  X.  B ) )
" C )  C_  ( ( A  X.  B ) " C
) )
20 ssdif 3484 . . . . . . . . 9  |-  ( ( ( R  i^i  ( A  X.  B ) )
" C )  C_  ( ( A  X.  B ) " C
)  ->  ( (
( R  i^i  ( A  X.  B ) )
" C )  \  B )  C_  (
( ( A  X.  B ) " C
)  \  B )
)
2118, 19, 20mp2b 10 . . . . . . . 8  |-  ( ( ( R  i^i  ( A  X.  B ) )
" C )  \  B )  C_  (
( ( A  X.  B ) " C
)  \  B )
22 xpima 5315 . . . . . . . . . . 11  |-  ( ( A  X.  B )
" C )  =  if ( ( A  i^i  C )  =  (/) ,  (/) ,  B )
23 incom 3535 . . . . . . . . . . . . . . 15  |-  ( C  i^i  A )  =  ( A  i^i  C
)
24 df-ss 3336 . . . . . . . . . . . . . . . 16  |-  ( C 
C_  A  <->  ( C  i^i  A )  =  C )
2524biimpi 188 . . . . . . . . . . . . . . 15  |-  ( C 
C_  A  ->  ( C  i^i  A )  =  C )
2623, 25syl5eqr 2484 . . . . . . . . . . . . . 14  |-  ( C 
C_  A  ->  ( A  i^i  C )  =  C )
2726adantl 454 . . . . . . . . . . . . 13  |-  ( ( C  =/=  (/)  /\  C  C_  A )  ->  ( A  i^i  C )  =  C )
28 simpl 445 . . . . . . . . . . . . 13  |-  ( ( C  =/=  (/)  /\  C  C_  A )  ->  C  =/=  (/) )
2927, 28eqnetrd 2621 . . . . . . . . . . . 12  |-  ( ( C  =/=  (/)  /\  C  C_  A )  ->  ( A  i^i  C )  =/=  (/) )
30 df-ne 2603 . . . . . . . . . . . . 13  |-  ( ( A  i^i  C )  =/=  (/)  <->  -.  ( A  i^i  C )  =  (/) )
3130biimpi 188 . . . . . . . . . . . 12  |-  ( ( A  i^i  C )  =/=  (/)  ->  -.  ( A  i^i  C )  =  (/) )
32 iffalse 3748 . . . . . . . . . . . 12  |-  ( -.  ( A  i^i  C
)  =  (/)  ->  if ( ( A  i^i  C )  =  (/) ,  (/) ,  B )  =  B )
3329, 31, 323syl 19 . . . . . . . . . . 11  |-  ( ( C  =/=  (/)  /\  C  C_  A )  ->  if ( ( A  i^i  C )  =  (/) ,  (/) ,  B )  =  B )
3422, 33syl5eq 2482 . . . . . . . . . 10  |-  ( ( C  =/=  (/)  /\  C  C_  A )  ->  (
( A  X.  B
) " C )  =  B )
3534difeq1d 3466 . . . . . . . . 9  |-  ( ( C  =/=  (/)  /\  C  C_  A )  ->  (
( ( A  X.  B ) " C
)  \  B )  =  ( B  \  B ) )
36 difid 3698 . . . . . . . . 9  |-  ( B 
\  B )  =  (/)
3735, 36syl6eq 2486 . . . . . . . 8  |-  ( ( C  =/=  (/)  /\  C  C_  A )  ->  (
( ( A  X.  B ) " C
)  \  B )  =  (/) )
3821, 37syl5sseq 3398 . . . . . . 7  |-  ( ( C  =/=  (/)  /\  C  C_  A )  ->  (
( ( R  i^i  ( A  X.  B
) ) " C
)  \  B )  C_  (/) )
39 ss0 3660 . . . . . . 7  |-  ( ( ( ( R  i^i  ( A  X.  B
) ) " C
)  \  B )  C_  (/)  ->  ( ( ( R  i^i  ( A  X.  B ) )
" C )  \  B )  =  (/) )
4038, 39syl 16 . . . . . 6  |-  ( ( C  =/=  (/)  /\  C  C_  A )  ->  (
( ( R  i^i  ( A  X.  B
) ) " C
)  \  B )  =  (/) )
41 df-ima 4893 . . . . . . . . . . 11  |-  ( ( R  \  ( A  X.  B ) )
" C )  =  ran  ( ( R 
\  ( A  X.  B ) )  |`  C )
42 df-res 4892 . . . . . . . . . . . 12  |-  ( ( R  \  ( A  X.  B ) )  |`  C )  =  ( ( R  \  ( A  X.  B ) )  i^i  ( C  X.  _V ) )
4342rneqi 5098 . . . . . . . . . . 11  |-  ran  (
( R  \  ( A  X.  B ) )  |`  C )  =  ran  ( ( R  \ 
( A  X.  B
) )  i^i  ( C  X.  _V ) )
4441, 43eqtri 2458 . . . . . . . . . 10  |-  ( ( R  \  ( A  X.  B ) )
" C )  =  ran  ( ( R 
\  ( A  X.  B ) )  i^i  ( C  X.  _V ) )
4544ineq1i 3540 . . . . . . . . 9  |-  ( ( ( R  \  ( A  X.  B ) )
" C )  i^i 
B )  =  ( ran  ( ( R 
\  ( A  X.  B ) )  i^i  ( C  X.  _V ) )  i^i  B
)
46 xpss1 4986 . . . . . . . . . . . 12  |-  ( C 
C_  A  ->  ( C  X.  _V )  C_  ( A  X.  _V )
)
47 sslin 3569 . . . . . . . . . . . 12  |-  ( ( C  X.  _V )  C_  ( A  X.  _V )  ->  ( ( R 
\  ( A  X.  B ) )  i^i  ( C  X.  _V ) )  C_  (
( R  \  ( A  X.  B ) )  i^i  ( A  X.  _V ) ) )
48 rnss 5100 . . . . . . . . . . . 12  |-  ( ( ( R  \  ( A  X.  B ) )  i^i  ( C  X.  _V ) )  C_  (
( R  \  ( A  X.  B ) )  i^i  ( A  X.  _V ) )  ->  ran  ( ( R  \ 
( A  X.  B
) )  i^i  ( C  X.  _V ) ) 
C_  ran  ( ( R  \  ( A  X.  B ) )  i^i  ( A  X.  _V ) ) )
4946, 47, 483syl 19 . . . . . . . . . . 11  |-  ( C 
C_  A  ->  ran  ( ( R  \ 
( A  X.  B
) )  i^i  ( C  X.  _V ) ) 
C_  ran  ( ( R  \  ( A  X.  B ) )  i^i  ( A  X.  _V ) ) )
5049adantl 454 . . . . . . . . . 10  |-  ( ( C  =/=  (/)  /\  C  C_  A )  ->  ran  ( ( R  \ 
( A  X.  B
) )  i^i  ( C  X.  _V ) ) 
C_  ran  ( ( R  \  ( A  X.  B ) )  i^i  ( A  X.  _V ) ) )
51 ssn0 3662 . . . . . . . . . . . 12  |-  ( ( C  C_  A  /\  C  =/=  (/) )  ->  A  =/=  (/) )
5251ancoms 441 . . . . . . . . . . 11  |-  ( ( C  =/=  (/)  /\  C  C_  A )  ->  A  =/=  (/) )
53 inss1 3563 . . . . . . . . . . . . . . . 16  |-  ( ( A  X.  _V )  i^i  R )  C_  ( A  X.  _V )
54 ssdif 3484 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  X.  _V )  i^i  R )  C_  ( A  X.  _V )  ->  ( ( ( A  X.  _V )  i^i 
R )  \  ( A  X.  B ) ) 
C_  ( ( A  X.  _V )  \ 
( A  X.  B
) ) )
5553, 54ax-mp 8 . . . . . . . . . . . . . . 15  |-  ( ( ( A  X.  _V )  i^i  R )  \ 
( A  X.  B
) )  C_  (
( A  X.  _V )  \  ( A  X.  B ) )
56 incom 3535 . . . . . . . . . . . . . . . 16  |-  ( ( A  X.  _V )  i^i  ( R  \  ( A  X.  B ) ) )  =  ( ( R  \  ( A  X.  B ) )  i^i  ( A  X.  _V ) )
57 indif2 3586 . . . . . . . . . . . . . . . 16  |-  ( ( A  X.  _V )  i^i  ( R  \  ( A  X.  B ) ) )  =  ( ( ( A  X.  _V )  i^i  R )  \ 
( A  X.  B
) )
5856, 57eqtr3i 2460 . . . . . . . . . . . . . . 15  |-  ( ( R  \  ( A  X.  B ) )  i^i  ( A  X.  _V ) )  =  ( ( ( A  X.  _V )  i^i  R ) 
\  ( A  X.  B ) )
59 difxp2 6384 . . . . . . . . . . . . . . 15  |-  ( A  X.  ( _V  \  B ) )  =  ( ( A  X.  _V )  \  ( A  X.  B ) )
6055, 58, 593sstr4i 3389 . . . . . . . . . . . . . 14  |-  ( ( R  \  ( A  X.  B ) )  i^i  ( A  X.  _V ) )  C_  ( A  X.  ( _V  \  B ) )
61 rnss 5100 . . . . . . . . . . . . . 14  |-  ( ( ( R  \  ( A  X.  B ) )  i^i  ( A  X.  _V ) )  C_  ( A  X.  ( _V  \  B ) )  ->  ran  ( ( R  \ 
( A  X.  B
) )  i^i  ( A  X.  _V ) ) 
C_  ran  ( A  X.  ( _V  \  B
) ) )
6260, 61mp1i 12 . . . . . . . . . . . . 13  |-  ( A  =/=  (/)  ->  ran  ( ( R  \  ( A  X.  B ) )  i^i  ( A  X.  _V ) )  C_  ran  ( A  X.  ( _V  \  B ) ) )
63 rnxp 5301 . . . . . . . . . . . . 13  |-  ( A  =/=  (/)  ->  ran  ( A  X.  ( _V  \  B ) )  =  ( _V  \  B
) )
6462, 63sseqtrd 3386 . . . . . . . . . . . 12  |-  ( A  =/=  (/)  ->  ran  ( ( R  \  ( A  X.  B ) )  i^i  ( A  X.  _V ) )  C_  ( _V  \  B ) )
65 disj2 3677 . . . . . . . . . . . 12  |-  ( ( ran  ( ( R 
\  ( A  X.  B ) )  i^i  ( A  X.  _V ) )  i^i  B
)  =  (/)  <->  ran  ( ( R  \  ( A  X.  B ) )  i^i  ( A  X.  _V ) )  C_  ( _V  \  B ) )
6664, 65sylibr 205 . . . . . . . . . . 11  |-  ( A  =/=  (/)  ->  ( ran  ( ( R  \ 
( A  X.  B
) )  i^i  ( A  X.  _V ) )  i^i  B )  =  (/) )
6752, 66syl 16 . . . . . . . . . 10  |-  ( ( C  =/=  (/)  /\  C  C_  A )  ->  ( ran  ( ( R  \ 
( A  X.  B
) )  i^i  ( A  X.  _V ) )  i^i  B )  =  (/) )
68 ssdisj 3679 . . . . . . . . . 10  |-  ( ( ran  ( ( R 
\  ( A  X.  B ) )  i^i  ( C  X.  _V ) )  C_  ran  ( ( R  \ 
( A  X.  B
) )  i^i  ( A  X.  _V ) )  /\  ( ran  (
( R  \  ( A  X.  B ) )  i^i  ( A  X.  _V ) )  i^i  B
)  =  (/) )  -> 
( ran  ( ( R  \  ( A  X.  B ) )  i^i  ( C  X.  _V ) )  i^i  B
)  =  (/) )
6950, 67, 68syl2anc 644 . . . . . . . . 9  |-  ( ( C  =/=  (/)  /\  C  C_  A )  ->  ( ran  ( ( R  \ 
( A  X.  B
) )  i^i  ( C  X.  _V ) )  i^i  B )  =  (/) )
7045, 69syl5eq 2482 . . . . . . . 8  |-  ( ( C  =/=  (/)  /\  C  C_  A )  ->  (
( ( R  \ 
( A  X.  B
) ) " C
)  i^i  B )  =  (/) )
71 disj3 3674 . . . . . . . 8  |-  ( ( ( ( R  \ 
( A  X.  B
) ) " C
)  i^i  B )  =  (/)  <->  ( ( R 
\  ( A  X.  B ) ) " C )  =  ( ( ( R  \ 
( A  X.  B
) ) " C
)  \  B )
)
7270, 71sylib 190 . . . . . . 7  |-  ( ( C  =/=  (/)  /\  C  C_  A )  ->  (
( R  \  ( A  X.  B ) )
" C )  =  ( ( ( R 
\  ( A  X.  B ) ) " C )  \  B
) )
7372eqcomd 2443 . . . . . 6  |-  ( ( C  =/=  (/)  /\  C  C_  A )  ->  (
( ( R  \ 
( A  X.  B
) ) " C
)  \  B )  =  ( ( R 
\  ( A  X.  B ) ) " C ) )
7440, 73uneq12d 3504 . . . . 5  |-  ( ( C  =/=  (/)  /\  C  C_  A )  ->  (
( ( ( R  i^i  ( A  X.  B ) ) " C )  \  B
)  u.  ( ( ( R  \  ( A  X.  B ) )
" C )  \  B ) )  =  ( (/)  u.  (
( R  \  ( A  X.  B ) )
" C ) ) )
7517, 74syl5eq 2482 . . . 4  |-  ( ( C  =/=  (/)  /\  C  C_  A )  ->  (
( R " C
)  \  B )  =  ( (/)  u.  (
( R  \  ( A  X.  B ) )
" C ) ) )
76 uncom 3493 . . . . 5  |-  ( (/)  u.  ( ( R  \ 
( A  X.  B
) ) " C
) )  =  ( ( ( R  \ 
( A  X.  B
) ) " C
)  u.  (/) )
77 un0 3654 . . . . 5  |-  ( ( ( R  \  ( A  X.  B ) )
" C )  u.  (/) )  =  (
( R  \  ( A  X.  B ) )
" C )
7876, 77eqtr2i 2459 . . . 4  |-  ( ( R  \  ( A  X.  B ) )
" C )  =  ( (/)  u.  (
( R  \  ( A  X.  B ) )
" C ) )
7975, 78syl6reqr 2489 . . 3  |-  ( ( C  =/=  (/)  /\  C  C_  A )  ->  (
( R  \  ( A  X.  B ) )
" C )  =  ( ( R " C )  \  B
) )
8079ancoms 441 . 2  |-  ( ( C  C_  A  /\  C  =/=  (/) )  ->  (
( R  \  ( A  X.  B ) )
" C )  =  ( ( R " C )  \  B
) )
8110, 80pm2.61dane 2684 1  |-  ( C 
C_  A  ->  (
( R  \  ( A  X.  B ) )
" C )  =  ( ( R " C )  \  B
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    = wceq 1653    =/= wne 2601   _Vcvv 2958    \ cdif 3319    u. cun 3320    i^i cin 3321    C_ wss 3322   (/)c0 3630   ifcif 3741    X. cxp 4878   ran crn 4881    |` cres 4882   "cima 4883
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pr 4405
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-br 4215  df-opab 4269  df-xp 4886  df-rel 4887  df-cnv 4888  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893
  Copyright terms: Public domain W3C validator