MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imadmrn Unicode version

Theorem imadmrn 5024
Description: The image of the domain of a class is the range of the class. (Contributed by NM, 14-Aug-1994.)
Assertion
Ref Expression
imadmrn  |-  ( A
" dom  A )  =  ran  A

Proof of Theorem imadmrn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2791 . . . . . . 7  |-  x  e. 
_V
2 vex 2791 . . . . . . 7  |-  y  e. 
_V
31, 2opeldm 4882 . . . . . 6  |-  ( <.
x ,  y >.  e.  A  ->  x  e. 
dom  A )
43pm4.71i 613 . . . . 5  |-  ( <.
x ,  y >.  e.  A  <->  ( <. x ,  y >.  e.  A  /\  x  e.  dom  A ) )
5 ancom 437 . . . . 5  |-  ( (
<. x ,  y >.  e.  A  /\  x  e.  dom  A )  <->  ( x  e.  dom  A  /\  <. x ,  y >.  e.  A
) )
64, 5bitr2i 241 . . . 4  |-  ( ( x  e.  dom  A  /\  <. x ,  y
>.  e.  A )  <->  <. x ,  y >.  e.  A
)
76exbii 1569 . . 3  |-  ( E. x ( x  e. 
dom  A  /\  <. x ,  y >.  e.  A
)  <->  E. x <. x ,  y >.  e.  A
)
87abbii 2395 . 2  |-  { y  |  E. x ( x  e.  dom  A  /\  <. x ,  y
>.  e.  A ) }  =  { y  |  E. x <. x ,  y >.  e.  A }
9 dfima3 5015 . 2  |-  ( A
" dom  A )  =  { y  |  E. x ( x  e. 
dom  A  /\  <. x ,  y >.  e.  A
) }
10 dfrn3 4869 . 2  |-  ran  A  =  { y  |  E. x <. x ,  y
>.  e.  A }
118, 9, 103eqtr4i 2313 1  |-  ( A
" dom  A )  =  ran  A
Colors of variables: wff set class
Syntax hints:    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   {cab 2269   <.cop 3643   dom cdm 4689   ran crn 4690   "cima 4692
This theorem is referenced by:  cnvimarndm  5034  foima  5456  f1imacnv  5489  fsn2  5698  resfunexg  5737  fnexALT  5742  elunirn  5777  uniqs2  6721  mapsn  6809  phplem4  7043  php3  7047  jech9.3  7486  fin4en1  7935  retopbas  18269  plyeq0  19593  rnelshi  22639  smbkle  26043  cndpv  26049  pgapspf  26052
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-xp 4695  df-cnv 4697  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702
  Copyright terms: Public domain W3C validator