Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  imadmrn Structured version   Unicode version

 Description: The image of the domain of a class is the range of the class. (Contributed by NM, 14-Aug-1994.)
Assertion
Ref Expression

Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2959 . . . . . . 7
2 vex 2959 . . . . . . 7
31, 2opeldm 5073 . . . . . 6
43pm4.71i 614 . . . . 5
5 ancom 438 . . . . 5
64, 5bitr2i 242 . . . 4
76exbii 1592 . . 3
87abbii 2548 . 2
9 dfima3 5206 . 2
10 dfrn3 5060 . 2
118, 9, 103eqtr4i 2466 1
 Colors of variables: wff set class Syntax hints:   wa 359  wex 1550   wceq 1652   wcel 1725  cab 2422  cop 3817   cdm 4878   crn 4879  cima 4881 This theorem is referenced by:  cnvimarndm  5225  foima  5658  f1imacnv  5691  fsn2  5908  resfunexg  5957  fnexALT  5962  elunirn  5998  uniqs2  6966  mapsn  7055  phplem4  7289  php3  7293  jech9.3  7740  fin4en1  8189  retopbas  18794  plyeq0  20130  rnelshi  23562 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-br 4213  df-opab 4267  df-xp 4884  df-cnv 4886  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891
 Copyright terms: Public domain W3C validator