Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaeq12d Structured version   Unicode version

Theorem imaeq12d 5196
 Description: Equality theorem for image. (Contributed by Mario Carneiro, 4-Dec-2016.)
Hypotheses
Ref Expression
imaeq1d.1
imaeq12d.2
Assertion
Ref Expression
imaeq12d

Proof of Theorem imaeq12d
StepHypRef Expression
1 imaeq1d.1 . . 3
21imaeq1d 5194 . 2
3 imaeq12d.2 . . 3
43imaeq2d 5195 . 2
52, 4eqtrd 2467 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1652  cima 4873 This theorem is referenced by:  csbima12g  5205  vdwpc  13340  dmdprd  15551  isunit  15754  qtopval  17719  limciun  19773  ig1pval  20087  ispth  21560  qqhval  24350  orvcval  24707  ballotlemrval  24767  ballotlemrinv0  24782  ballotlemrinv  24783  predeq123  25432  itg2addnclem2  26247  islmodfg  27135 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259  df-xp 4876  df-cnv 4878  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883
 Copyright terms: Public domain W3C validator