MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imafi Unicode version

Theorem imafi 7336
Description: Images of finite sets are finite. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
imafi  |-  ( ( Fun  F  /\  X  e.  Fin )  ->  ( F " X )  e. 
Fin )

Proof of Theorem imafi
StepHypRef Expression
1 imadmres 5304 . 2  |-  ( F
" dom  ( F  |`  X ) )  =  ( F " X
)
2 simpr 448 . . . 4  |-  ( ( Fun  F  /\  X  e.  Fin )  ->  X  e.  Fin )
3 dmres 5109 . . . . 5  |-  dom  ( F  |`  X )  =  ( X  i^i  dom  F )
4 inss1 3506 . . . . 5  |-  ( X  i^i  dom  F )  C_  X
53, 4eqsstri 3323 . . . 4  |-  dom  ( F  |`  X )  C_  X
6 ssfi 7267 . . . 4  |-  ( ( X  e.  Fin  /\  dom  ( F  |`  X ) 
C_  X )  ->  dom  ( F  |`  X )  e.  Fin )
72, 5, 6sylancl 644 . . 3  |-  ( ( Fun  F  /\  X  e.  Fin )  ->  dom  ( F  |`  X )  e.  Fin )
8 resss 5112 . . . . 5  |-  ( F  |`  X )  C_  F
9 dmss 5011 . . . . 5  |-  ( ( F  |`  X )  C_  F  ->  dom  ( F  |`  X )  C_  dom  F )
108, 9mp1i 12 . . . 4  |-  ( ( Fun  F  /\  X  e.  Fin )  ->  dom  ( F  |`  X ) 
C_  dom  F )
11 fores 5604 . . . 4  |-  ( ( Fun  F  /\  dom  ( F  |`  X ) 
C_  dom  F )  ->  ( F  |`  dom  ( F  |`  X ) ) : dom  ( F  |`  X ) -onto-> ( F
" dom  ( F  |`  X ) ) )
1210, 11syldan 457 . . 3  |-  ( ( Fun  F  /\  X  e.  Fin )  ->  ( F  |`  dom  ( F  |`  X ) ) : dom  ( F  |`  X ) -onto-> ( F
" dom  ( F  |`  X ) ) )
13 fofi 7330 . . 3  |-  ( ( dom  ( F  |`  X )  e.  Fin  /\  ( F  |`  dom  ( F  |`  X ) ) : dom  ( F  |`  X ) -onto-> ( F
" dom  ( F  |`  X ) ) )  ->  ( F " dom  ( F  |`  X ) )  e.  Fin )
147, 12, 13syl2anc 643 . 2  |-  ( ( Fun  F  /\  X  e.  Fin )  ->  ( F " dom  ( F  |`  X ) )  e. 
Fin )
151, 14syl5eqelr 2474 1  |-  ( ( Fun  F  /\  X  e.  Fin )  ->  ( F " X )  e. 
Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    e. wcel 1717    i^i cin 3264    C_ wss 3265   dom cdm 4820    |` cres 4822   "cima 4823   Fun wfun 5390   -onto->wfo 5394   Fincfn 7047
This theorem is referenced by:  suppfif1  7337  fissuni  7348  fipreima  7349  mapfien  7588  cmpfi  17395  mdegldg  19858  mdegcl  19861  elrfirn  26442
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-reu 2658  df-rab 2660  df-v 2903  df-sbc 3107  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-br 4156  df-opab 4210  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-1o 6662  df-er 6843  df-en 7048  df-dom 7049  df-fin 7051
  Copyright terms: Public domain W3C validator