MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imainss Structured version   Unicode version

Theorem imainss 5279
Description: An upper bound for intersection with an image. Theorem 41 of [Suppes] p. 66. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
imainss  |-  ( ( R " A )  i^i  B )  C_  ( R " ( A  i^i  ( `' R " B ) ) )

Proof of Theorem imainss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2951 . . . . . . . . . . 11  |-  y  e. 
_V
2 vex 2951 . . . . . . . . . . 11  |-  x  e. 
_V
31, 2brcnv 5047 . . . . . . . . . 10  |-  ( y `' R x  <->  x R
y )
4 19.8a 1762 . . . . . . . . . 10  |-  ( ( y  e.  B  /\  y `' R x )  ->  E. y ( y  e.  B  /\  y `' R x ) )
53, 4sylan2br 463 . . . . . . . . 9  |-  ( ( y  e.  B  /\  x R y )  ->  E. y ( y  e.  B  /\  y `' R x ) )
65ancoms 440 . . . . . . . 8  |-  ( ( x R y  /\  y  e.  B )  ->  E. y ( y  e.  B  /\  y `' R x ) )
76anim2i 553 . . . . . . 7  |-  ( ( x  e.  A  /\  ( x R y  /\  y  e.  B
) )  ->  (
x  e.  A  /\  E. y ( y  e.  B  /\  y `' R x ) ) )
8 simprl 733 . . . . . . 7  |-  ( ( x  e.  A  /\  ( x R y  /\  y  e.  B
) )  ->  x R y )
97, 8jca 519 . . . . . 6  |-  ( ( x  e.  A  /\  ( x R y  /\  y  e.  B
) )  ->  (
( x  e.  A  /\  E. y ( y  e.  B  /\  y `' R x ) )  /\  x R y ) )
109anassrs 630 . . . . 5  |-  ( ( ( x  e.  A  /\  x R y )  /\  y  e.  B
)  ->  ( (
x  e.  A  /\  E. y ( y  e.  B  /\  y `' R x ) )  /\  x R y ) )
11 elin 3522 . . . . . . 7  |-  ( x  e.  ( A  i^i  ( `' R " B ) )  <->  ( x  e.  A  /\  x  e.  ( `' R " B ) ) )
122elima2 5201 . . . . . . . 8  |-  ( x  e.  ( `' R " B )  <->  E. y
( y  e.  B  /\  y `' R x ) )
1312anbi2i 676 . . . . . . 7  |-  ( ( x  e.  A  /\  x  e.  ( `' R " B ) )  <-> 
( x  e.  A  /\  E. y ( y  e.  B  /\  y `' R x ) ) )
1411, 13bitri 241 . . . . . 6  |-  ( x  e.  ( A  i^i  ( `' R " B ) )  <->  ( x  e.  A  /\  E. y
( y  e.  B  /\  y `' R x ) ) )
1514anbi1i 677 . . . . 5  |-  ( ( x  e.  ( A  i^i  ( `' R " B ) )  /\  x R y )  <->  ( (
x  e.  A  /\  E. y ( y  e.  B  /\  y `' R x ) )  /\  x R y ) )
1610, 15sylibr 204 . . . 4  |-  ( ( ( x  e.  A  /\  x R y )  /\  y  e.  B
)  ->  ( x  e.  ( A  i^i  ( `' R " B ) )  /\  x R y ) )
1716eximi 1585 . . 3  |-  ( E. x ( ( x  e.  A  /\  x R y )  /\  y  e.  B )  ->  E. x ( x  e.  ( A  i^i  ( `' R " B ) )  /\  x R y ) )
181elima2 5201 . . . . 5  |-  ( y  e.  ( R " A )  <->  E. x
( x  e.  A  /\  x R y ) )
1918anbi1i 677 . . . 4  |-  ( ( y  e.  ( R
" A )  /\  y  e.  B )  <->  ( E. x ( x  e.  A  /\  x R y )  /\  y  e.  B )
)
20 elin 3522 . . . 4  |-  ( y  e.  ( ( R
" A )  i^i 
B )  <->  ( y  e.  ( R " A
)  /\  y  e.  B ) )
21 19.41v 1924 . . . 4  |-  ( E. x ( ( x  e.  A  /\  x R y )  /\  y  e.  B )  <->  ( E. x ( x  e.  A  /\  x R y )  /\  y  e.  B )
)
2219, 20, 213bitr4i 269 . . 3  |-  ( y  e.  ( ( R
" A )  i^i 
B )  <->  E. x
( ( x  e.  A  /\  x R y )  /\  y  e.  B ) )
231elima2 5201 . . 3  |-  ( y  e.  ( R "
( A  i^i  ( `' R " B ) ) )  <->  E. x
( x  e.  ( A  i^i  ( `' R " B ) )  /\  x R y ) )
2417, 22, 233imtr4i 258 . 2  |-  ( y  e.  ( ( R
" A )  i^i 
B )  ->  y  e.  ( R " ( A  i^i  ( `' R " B ) ) ) )
2524ssriv 3344 1  |-  ( ( R " A )  i^i  B )  C_  ( R " ( A  i^i  ( `' R " B ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 359   E.wex 1550    e. wcel 1725    i^i cin 3311    C_ wss 3312   class class class wbr 4204   `'ccnv 4869   "cima 4873
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259  df-xp 4876  df-cnv 4878  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883
  Copyright terms: Public domain W3C validator