MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasaddfnlem Unicode version

Theorem imasaddfnlem 13446
Description: The image structure operation is a function if the original operation is compatible with the function. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
imasaddf.f  |-  ( ph  ->  F : V -onto-> B
)
imasaddf.e  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( F `  a
)  =  ( F `
 p )  /\  ( F `  b )  =  ( F `  q ) )  -> 
( F `  (
a  .x.  b )
)  =  ( F `
 ( p  .x.  q ) ) ) )
imasaddflem.a  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } )
Assertion
Ref Expression
imasaddfnlem  |-  ( ph  -> 
.xb  Fn  ( B  X.  B ) )
Distinct variable groups:    q, p, B    a, b, p, q, V    .x. , p, q    F, a, b, p, q    ph, a,
b, p, q    .xb , a,
b, p, q
Allowed substitution hints:    B( a, b)    .x. ( a, b)

Proof of Theorem imasaddfnlem
Dummy variables  w  y  z  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 4253 . . . . . . . . 9  |-  <. ( F `  p ) ,  ( F `  q ) >.  e.  _V
2 fvex 5555 . . . . . . . . 9  |-  ( F `
 ( p  .x.  q ) )  e. 
_V
31, 2relsnop 4807 . . . . . . . 8  |-  Rel  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }
43rgenw 2623 . . . . . . 7  |-  A. q  e.  V  Rel  { <. <.
( F `  p
) ,  ( F `
 q ) >. ,  ( F `  ( p  .x.  q ) ) >. }
5 reliun 4822 . . . . . . 7  |-  ( Rel  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  <->  A. q  e.  V  Rel  { <. <.
( F `  p
) ,  ( F `
 q ) >. ,  ( F `  ( p  .x.  q ) ) >. } )
64, 5mpbir 200 . . . . . 6  |-  Rel  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. }
76rgenw 2623 . . . . 5  |-  A. p  e.  V  Rel  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. }
8 reliun 4822 . . . . 5  |-  ( Rel  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  <->  A. p  e.  V  Rel  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } )
97, 8mpbir 200 . . . 4  |-  Rel  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. }
10 imasaddflem.a . . . . 5  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } )
1110releqd 4789 . . . 4  |-  ( ph  ->  ( Rel  .xb  <->  Rel  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } ) )
129, 11mpbiri 224 . . 3  |-  ( ph  ->  Rel  .xb  )
13 imasaddf.f . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  F : V -onto-> B
)
14 fof 5467 . . . . . . . . . . . . . . . . . 18  |-  ( F : V -onto-> B  ->  F : V --> B )
1513, 14syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  F : V --> B )
16 ffvelrn 5679 . . . . . . . . . . . . . . . . . 18  |-  ( ( F : V --> B  /\  p  e.  V )  ->  ( F `  p
)  e.  B )
17 ffvelrn 5679 . . . . . . . . . . . . . . . . . 18  |-  ( ( F : V --> B  /\  q  e.  V )  ->  ( F `  q
)  e.  B )
1816, 17anim12dan 810 . . . . . . . . . . . . . . . . 17  |-  ( ( F : V --> B  /\  ( p  e.  V  /\  q  e.  V
) )  ->  (
( F `  p
)  e.  B  /\  ( F `  q )  e.  B ) )
1915, 18sylan 457 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  -> 
( ( F `  p )  e.  B  /\  ( F `  q
)  e.  B ) )
20 opelxpi 4737 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  p
)  e.  B  /\  ( F `  q )  e.  B )  ->  <. ( F `  p
) ,  ( F `
 q ) >.  e.  ( B  X.  B
) )
2119, 20syl 15 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  ->  <. ( F `  p
) ,  ( F `
 q ) >.  e.  ( B  X.  B
) )
22 opelxpi 4737 . . . . . . . . . . . . . . 15  |-  ( (
<. ( F `  p
) ,  ( F `
 q ) >.  e.  ( B  X.  B
)  /\  ( F `  ( p  .x.  q
) )  e.  _V )  ->  <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >.  e.  ( ( B  X.  B
)  X.  _V )
)
2321, 2, 22sylancl 643 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  ->  <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >.  e.  ( ( B  X.  B
)  X.  _V )
)
2423snssd 3776 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  ->  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  C_  ( ( B  X.  B )  X.  _V ) )
2524anassrs 629 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e.  V )  /\  q  e.  V )  ->  { <. <.
( F `  p
) ,  ( F `
 q ) >. ,  ( F `  ( p  .x.  q ) ) >. }  C_  (
( B  X.  B
)  X.  _V )
)
2625ralrimiva 2639 . . . . . . . . . . 11  |-  ( (
ph  /\  p  e.  V )  ->  A. q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. }  C_  ( ( B  X.  B )  X. 
_V ) )
27 iunss 3959 . . . . . . . . . . 11  |-  ( U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  C_  ( ( B  X.  B )  X.  _V ) 
<-> 
A. q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  C_  ( ( B  X.  B )  X.  _V ) )
2826, 27sylibr 203 . . . . . . . . . 10  |-  ( (
ph  /\  p  e.  V )  ->  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. }  C_  ( ( B  X.  B )  X. 
_V ) )
2928ralrimiva 2639 . . . . . . . . 9  |-  ( ph  ->  A. p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  C_  ( ( B  X.  B )  X.  _V ) )
30 iunss 3959 . . . . . . . . 9  |-  ( U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. }  C_  ( ( B  X.  B )  X. 
_V )  <->  A. p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. }  C_  ( ( B  X.  B )  X. 
_V ) )
3129, 30sylibr 203 . . . . . . . 8  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  C_  ( ( B  X.  B )  X.  _V ) )
3210, 31eqsstrd 3225 . . . . . . 7  |-  ( ph  -> 
.xb  C_  ( ( B  X.  B )  X. 
_V ) )
33 dmss 4894 . . . . . . 7  |-  (  .xb  C_  ( ( B  X.  B )  X.  _V )  ->  dom  .xb  C_  dom  ( ( B  X.  B )  X.  _V ) )
3432, 33syl 15 . . . . . 6  |-  ( ph  ->  dom  .xb  C_  dom  (
( B  X.  B
)  X.  _V )
)
35 vn0 3475 . . . . . . 7  |-  _V  =/=  (/)
36 dmxp 4913 . . . . . . 7  |-  ( _V  =/=  (/)  ->  dom  ( ( B  X.  B )  X.  _V )  =  ( B  X.  B
) )
3735, 36ax-mp 8 . . . . . 6  |-  dom  (
( B  X.  B
)  X.  _V )  =  ( B  X.  B )
3834, 37syl6sseq 3237 . . . . 5  |-  ( ph  ->  dom  .xb  C_  ( B  X.  B ) )
39 forn 5470 . . . . . . 7  |-  ( F : V -onto-> B  ->  ran  F  =  B )
4013, 39syl 15 . . . . . 6  |-  ( ph  ->  ran  F  =  B )
4140, 40xpeq12d 4730 . . . . 5  |-  ( ph  ->  ( ran  F  X.  ran  F )  =  ( B  X.  B ) )
4238, 41sseqtr4d 3228 . . . 4  |-  ( ph  ->  dom  .xb  C_  ( ran 
F  X.  ran  F
) )
4310eleq2d 2363 . . . . . . . . . . . . 13  |-  ( ph  ->  ( <. <. ( F `  a ) ,  ( F `  b )
>. ,  w >.  e. 
.xb 
<-> 
<. <. ( F `  a ) ,  ( F `  b )
>. ,  w >.  e. 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } ) )
4443adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
( <. <. ( F `  a ) ,  ( F `  b )
>. ,  w >.  e. 
.xb 
<-> 
<. <. ( F `  a ) ,  ( F `  b )
>. ,  w >.  e. 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } ) )
45 df-br 4040 . . . . . . . . . . . 12  |-  ( <.
( F `  a
) ,  ( F `
 b ) >.  .xb  w  <->  <. <. ( F `  a ) ,  ( F `  b )
>. ,  w >.  e. 
.xb  )
46 eliun 3925 . . . . . . . . . . . . 13  |-  ( <. <. ( F `  a
) ,  ( F `
 b ) >. ,  w >.  e.  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. }  <->  E. p  e.  V  <. <. ( F `  a ) ,  ( F `  b )
>. ,  w >.  e. 
U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } )
47 eliun 3925 . . . . . . . . . . . . . 14  |-  ( <. <. ( F `  a
) ,  ( F `
 b ) >. ,  w >.  e.  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. }  <->  E. q  e.  V  <. <. ( F `  a ) ,  ( F `  b )
>. ,  w >.  e. 
{ <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } )
4847rexbii 2581 . . . . . . . . . . . . 13  |-  ( E. p  e.  V  <. <.
( F `  a
) ,  ( F `
 b ) >. ,  w >.  e.  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. }  <->  E. p  e.  V  E. q  e.  V  <. <. ( F `  a ) ,  ( F `  b )
>. ,  w >.  e. 
{ <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } )
4946, 48bitr2i 241 . . . . . . . . . . . 12  |-  ( E. p  e.  V  E. q  e.  V  <. <.
( F `  a
) ,  ( F `
 b ) >. ,  w >.  e.  { <. <.
( F `  p
) ,  ( F `
 q ) >. ,  ( F `  ( p  .x.  q ) ) >. }  <->  <. <. ( F `  a ) ,  ( F `  b ) >. ,  w >.  e.  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } )
5044, 45, 493bitr4g 279 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
( <. ( F `  a ) ,  ( F `  b )
>.  .xb  w  <->  E. p  e.  V  E. q  e.  V  <. <. ( F `  a ) ,  ( F `  b ) >. ,  w >.  e.  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } ) )
51 opex 4253 . . . . . . . . . . . . . . 15  |-  <. <. ( F `  a ) ,  ( F `  b ) >. ,  w >.  e.  _V
5251elsnc 3676 . . . . . . . . . . . . . 14  |-  ( <. <. ( F `  a
) ,  ( F `
 b ) >. ,  w >.  e.  { <. <.
( F `  p
) ,  ( F `
 q ) >. ,  ( F `  ( p  .x.  q ) ) >. }  <->  <. <. ( F `  a ) ,  ( F `  b ) >. ,  w >.  =  <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. )
53 opex 4253 . . . . . . . . . . . . . . . 16  |-  <. ( F `  a ) ,  ( F `  b ) >.  e.  _V
54 vex 2804 . . . . . . . . . . . . . . . 16  |-  w  e. 
_V
5553, 54opth 4261 . . . . . . . . . . . . . . 15  |-  ( <. <. ( F `  a
) ,  ( F `
 b ) >. ,  w >.  =  <. <.
( F `  p
) ,  ( F `
 q ) >. ,  ( F `  ( p  .x.  q ) ) >.  <->  ( <. ( F `  a ) ,  ( F `  b ) >.  =  <. ( F `  p ) ,  ( F `  q ) >.  /\  w  =  ( F `  ( p  .x.  q ) ) ) )
56 fvex 5555 . . . . . . . . . . . . . . . . . . 19  |-  ( F `
 a )  e. 
_V
57 fvex 5555 . . . . . . . . . . . . . . . . . . 19  |-  ( F `
 b )  e. 
_V
5856, 57opth 4261 . . . . . . . . . . . . . . . . . 18  |-  ( <.
( F `  a
) ,  ( F `
 b ) >.  =  <. ( F `  p ) ,  ( F `  q )
>. 
<->  ( ( F `  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) )
59 imasaddf.e . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( F `  a
)  =  ( F `
 p )  /\  ( F `  b )  =  ( F `  q ) )  -> 
( F `  (
a  .x.  b )
)  =  ( F `
 ( p  .x.  q ) ) ) )
6058, 59syl5bi 208 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( <. ( F `  a ) ,  ( F `  b ) >.  =  <. ( F `  p ) ,  ( F `  q ) >.  ->  ( F `  ( a  .x.  b ) )  =  ( F `  (
p  .x.  q )
) ) )
61 eqeq2 2305 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  ( a 
.x.  b ) )  =  ( F `  ( p  .x.  q ) )  ->  ( w  =  ( F `  ( a  .x.  b
) )  <->  w  =  ( F `  ( p 
.x.  q ) ) ) )
6261biimprd 214 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  ( a 
.x.  b ) )  =  ( F `  ( p  .x.  q ) )  ->  ( w  =  ( F `  ( p  .x.  q ) )  ->  w  =  ( F `  ( a 
.x.  b ) ) ) )
6360, 62syl6 29 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( <. ( F `  a ) ,  ( F `  b ) >.  =  <. ( F `  p ) ,  ( F `  q ) >.  ->  (
w  =  ( F `
 ( p  .x.  q ) )  ->  w  =  ( F `  ( a  .x.  b
) ) ) ) )
6463imp3a 420 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( ( <. ( F `  a
) ,  ( F `
 b ) >.  =  <. ( F `  p ) ,  ( F `  q )
>.  /\  w  =  ( F `  ( p 
.x.  q ) ) )  ->  w  =  ( F `  ( a 
.x.  b ) ) ) )
6555, 64syl5bi 208 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( <. <.
( F `  a
) ,  ( F `
 b ) >. ,  w >.  =  <. <.
( F `  p
) ,  ( F `
 q ) >. ,  ( F `  ( p  .x.  q ) ) >.  ->  w  =  ( F `  (
a  .x.  b )
) ) )
6652, 65syl5bi 208 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( <. <.
( F `  a
) ,  ( F `
 b ) >. ,  w >.  e.  { <. <.
( F `  p
) ,  ( F `
 q ) >. ,  ( F `  ( p  .x.  q ) ) >. }  ->  w  =  ( F `  ( a  .x.  b
) ) ) )
67663expa 1151 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  ( p  e.  V  /\  q  e.  V ) )  -> 
( <. <. ( F `  a ) ,  ( F `  b )
>. ,  w >.  e. 
{ <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  ->  w  =  ( F `  ( a  .x.  b
) ) ) )
6867rexlimdvva 2687 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
( E. p  e.  V  E. q  e.  V  <. <. ( F `  a ) ,  ( F `  b )
>. ,  w >.  e. 
{ <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  ->  w  =  ( F `  ( a  .x.  b
) ) ) )
6950, 68sylbid 206 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
( <. ( F `  a ) ,  ( F `  b )
>.  .xb  w  ->  w  =  ( F `  ( a  .x.  b
) ) ) )
7069alrimiv 1621 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  ->  A. w ( <. ( F `  a ) ,  ( F `  b ) >.  .xb  w  ->  w  =  ( F `
 ( a  .x.  b ) ) ) )
71 mo2icl 2957 . . . . . . . . 9  |-  ( A. w ( <. ( F `  a ) ,  ( F `  b ) >.  .xb  w  ->  w  =  ( F `
 ( a  .x.  b ) ) )  ->  E* w <. ( F `  a ) ,  ( F `  b ) >.  .xb  w
)
7270, 71syl 15 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  ->  E* w <. ( F `  a ) ,  ( F `  b )
>.  .xb  w )
7372ralrimivva 2648 . . . . . . 7  |-  ( ph  ->  A. a  e.  V  A. b  e.  V  E* w <. ( F `  a ) ,  ( F `  b )
>.  .xb  w )
74 fofn 5469 . . . . . . . . . 10  |-  ( F : V -onto-> B  ->  F  Fn  V )
7513, 74syl 15 . . . . . . . . 9  |-  ( ph  ->  F  Fn  V )
76 opeq2 3813 . . . . . . . . . . . 12  |-  ( z  =  ( F `  b )  ->  <. ( F `  a ) ,  z >.  =  <. ( F `  a ) ,  ( F `  b ) >. )
7776breq1d 4049 . . . . . . . . . . 11  |-  ( z  =  ( F `  b )  ->  ( <. ( F `  a
) ,  z >.  .xb  w  <->  <. ( F `  a ) ,  ( F `  b )
>.  .xb  w ) )
7877mobidv 2191 . . . . . . . . . 10  |-  ( z  =  ( F `  b )  ->  ( E* w <. ( F `  a ) ,  z
>.  .xb  w  <->  E* w <. ( F `  a
) ,  ( F `
 b ) >.  .xb  w ) )
7978ralrn 5684 . . . . . . . . 9  |-  ( F  Fn  V  ->  ( A. z  e.  ran  F E* w <. ( F `  a ) ,  z >.  .xb  w  <->  A. b  e.  V  E* w <. ( F `  a ) ,  ( F `  b )
>.  .xb  w ) )
8075, 79syl 15 . . . . . . . 8  |-  ( ph  ->  ( A. z  e. 
ran  F E* w <. ( F `  a
) ,  z >.  .xb  w  <->  A. b  e.  V  E* w <. ( F `  a ) ,  ( F `  b )
>.  .xb  w ) )
8180ralbidv 2576 . . . . . . 7  |-  ( ph  ->  ( A. a  e.  V  A. z  e. 
ran  F E* w <. ( F `  a
) ,  z >.  .xb  w  <->  A. a  e.  V  A. b  e.  V  E* w <. ( F `  a ) ,  ( F `  b )
>.  .xb  w ) )
8273, 81mpbird 223 . . . . . 6  |-  ( ph  ->  A. a  e.  V  A. z  e.  ran  F E* w <. ( F `  a ) ,  z >.  .xb  w
)
83 opeq1 3812 . . . . . . . . . . 11  |-  ( y  =  ( F `  a )  ->  <. y ,  z >.  =  <. ( F `  a ) ,  z >. )
8483breq1d 4049 . . . . . . . . . 10  |-  ( y  =  ( F `  a )  ->  ( <. y ,  z >.  .xb  w  <->  <. ( F `  a ) ,  z
>.  .xb  w ) )
8584mobidv 2191 . . . . . . . . 9  |-  ( y  =  ( F `  a )  ->  ( E* w <. y ,  z
>.  .xb  w  <->  E* w <. ( F `  a
) ,  z >.  .xb  w ) )
8685ralbidv 2576 . . . . . . . 8  |-  ( y  =  ( F `  a )  ->  ( A. z  e.  ran  F E* w <. y ,  z >.  .xb  w  <->  A. z  e.  ran  F E* w <. ( F `  a ) ,  z
>.  .xb  w ) )
8786ralrn 5684 . . . . . . 7  |-  ( F  Fn  V  ->  ( A. y  e.  ran  F A. z  e.  ran  F E* w <. y ,  z >.  .xb  w  <->  A. a  e.  V  A. z  e.  ran  F E* w <. ( F `  a ) ,  z
>.  .xb  w ) )
8875, 87syl 15 . . . . . 6  |-  ( ph  ->  ( A. y  e. 
ran  F A. z  e.  ran  F E* w <. y ,  z >.  .xb  w  <->  A. a  e.  V  A. z  e.  ran  F E* w <. ( F `  a ) ,  z >.  .xb  w
) )
8982, 88mpbird 223 . . . . 5  |-  ( ph  ->  A. y  e.  ran  F A. z  e.  ran  F E* w <. y ,  z >.  .xb  w
)
90 breq1 4042 . . . . . . 7  |-  ( x  =  <. y ,  z
>.  ->  ( x  .xb  w 
<-> 
<. y ,  z >.  .xb  w ) )
9190mobidv 2191 . . . . . 6  |-  ( x  =  <. y ,  z
>.  ->  ( E* w  x  .xb  w  <->  E* w <. y ,  z >.  .xb  w ) )
9291ralxp 4843 . . . . 5  |-  ( A. x  e.  ( ran  F  X.  ran  F ) E* w  x  .xb  w 
<-> 
A. y  e.  ran  F A. z  e.  ran  F E* w <. y ,  z >.  .xb  w
)
9389, 92sylibr 203 . . . 4  |-  ( ph  ->  A. x  e.  ( ran  F  X.  ran  F ) E* w  x 
.xb  w )
94 ssralv 3250 . . . 4  |-  ( dom  .xb  C_  ( ran  F  X.  ran  F )  -> 
( A. x  e.  ( ran  F  X.  ran  F ) E* w  x  .xb  w  ->  A. x  e.  dom  .xb  E* w  x  .xb  w ) )
9542, 93, 94sylc 56 . . 3  |-  ( ph  ->  A. x  e.  dom  .xb 
E* w  x  .xb  w )
96 dffun7 5296 . . 3  |-  ( Fun  .xb 
<->  ( Rel  .xb  /\  A. x  e.  dom  .xb  E* w  x  .xb  w ) )
9712, 95, 96sylanbrc 645 . 2  |-  ( ph  ->  Fun  .xb  )
98 eqimss2 3244 . . . . . . . . . . 11  |-  (  .xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  C_  .xb  )
9910, 98syl 15 . . . . . . . . . 10  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  C_  .xb  )
100 iunss 3959 . . . . . . . . . 10  |-  ( U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. }  C_  .xb  <->  A. p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. }  C_  .xb  )
10199, 100sylib 188 . . . . . . . . 9  |-  ( ph  ->  A. p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  C_  .xb  )
102 iunss 3959 . . . . . . . . . . 11  |-  ( U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  C_  .xb  <->  A. q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  C_  .xb  )
103 opex 4253 . . . . . . . . . . . . . 14  |-  <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>.  e.  _V
104103snss 3761 . . . . . . . . . . . . 13  |-  ( <. <. ( F `  p
) ,  ( F `
 q ) >. ,  ( F `  ( p  .x.  q ) ) >.  e.  .xb  <->  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. }  C_  .xb  )
1051, 2opeldm 4898 . . . . . . . . . . . . 13  |-  ( <. <. ( F `  p
) ,  ( F `
 q ) >. ,  ( F `  ( p  .x.  q ) ) >.  e.  .xb  ->  <.
( F `  p
) ,  ( F `
 q ) >.  e.  dom  .xb  )
106104, 105sylbir 204 . . . . . . . . . . . 12  |-  ( {
<. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  C_  .xb 
->  <. ( F `  p ) ,  ( F `  q )
>.  e.  dom  .xb  )
107106ralimi 2631 . . . . . . . . . . 11  |-  ( A. q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  C_  .xb 
->  A. q  e.  V  <. ( F `  p
) ,  ( F `
 q ) >.  e.  dom  .xb  )
108102, 107sylbi 187 . . . . . . . . . 10  |-  ( U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  C_  .xb 
->  A. q  e.  V  <. ( F `  p
) ,  ( F `
 q ) >.  e.  dom  .xb  )
109108ralimi 2631 . . . . . . . . 9  |-  ( A. p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. }  C_  .xb  ->  A. p  e.  V  A. q  e.  V  <. ( F `
 p ) ,  ( F `  q
) >.  e.  dom  .xb  )
110101, 109syl 15 . . . . . . . 8  |-  ( ph  ->  A. p  e.  V  A. q  e.  V  <. ( F `  p
) ,  ( F `
 q ) >.  e.  dom  .xb  )
111 opeq2 3813 . . . . . . . . . . . 12  |-  ( z  =  ( F `  q )  ->  <. ( F `  p ) ,  z >.  =  <. ( F `  p ) ,  ( F `  q ) >. )
112111eleq1d 2362 . . . . . . . . . . 11  |-  ( z  =  ( F `  q )  ->  ( <. ( F `  p
) ,  z >.  e.  dom  .xb  <->  <. ( F `  p ) ,  ( F `  q )
>.  e.  dom  .xb  )
)
113112ralrn 5684 . . . . . . . . . 10  |-  ( F  Fn  V  ->  ( A. z  e.  ran  F
<. ( F `  p
) ,  z >.  e.  dom  .xb  <->  A. q  e.  V  <. ( F `  p
) ,  ( F `
 q ) >.  e.  dom  .xb  ) )
11475, 113syl 15 . . . . . . . . 9  |-  ( ph  ->  ( A. z  e. 
ran  F <. ( F `  p ) ,  z >.  e.  dom  .xb  <->  A. q  e.  V  <. ( F `  p ) ,  ( F `  q ) >.  e.  dom  .xb  ) )
115114ralbidv 2576 . . . . . . . 8  |-  ( ph  ->  ( A. p  e.  V  A. z  e. 
ran  F <. ( F `  p ) ,  z >.  e.  dom  .xb  <->  A. p  e.  V  A. q  e.  V  <. ( F `  p ) ,  ( F `  q ) >.  e.  dom  .xb  ) )
116110, 115mpbird 223 . . . . . . 7  |-  ( ph  ->  A. p  e.  V  A. z  e.  ran  F
<. ( F `  p
) ,  z >.  e.  dom  .xb  )
117 opeq1 3812 . . . . . . . . . . 11  |-  ( y  =  ( F `  p )  ->  <. y ,  z >.  =  <. ( F `  p ) ,  z >. )
118117eleq1d 2362 . . . . . . . . . 10  |-  ( y  =  ( F `  p )  ->  ( <. y ,  z >.  e.  dom  .xb  <->  <. ( F `  p ) ,  z
>.  e.  dom  .xb  )
)
119118ralbidv 2576 . . . . . . . . 9  |-  ( y  =  ( F `  p )  ->  ( A. z  e.  ran  F
<. y ,  z >.  e.  dom  .xb  <->  A. z  e.  ran  F
<. ( F `  p
) ,  z >.  e.  dom  .xb  ) )
120119ralrn 5684 . . . . . . . 8  |-  ( F  Fn  V  ->  ( A. y  e.  ran  F A. z  e.  ran  F
<. y ,  z >.  e.  dom  .xb  <->  A. p  e.  V  A. z  e.  ran  F
<. ( F `  p
) ,  z >.  e.  dom  .xb  ) )
12175, 120syl 15 . . . . . . 7  |-  ( ph  ->  ( A. y  e. 
ran  F A. z  e.  ran  F <. y ,  z >.  e.  dom  .xb  <->  A. p  e.  V  A. z  e.  ran  F <. ( F `  p ) ,  z >.  e.  dom  .xb  ) )
122116, 121mpbird 223 . . . . . 6  |-  ( ph  ->  A. y  e.  ran  F A. z  e.  ran  F
<. y ,  z >.  e.  dom  .xb  )
123 eleq1 2356 . . . . . . 7  |-  ( x  =  <. y ,  z
>.  ->  ( x  e. 
dom  .xb  <->  <. y ,  z
>.  e.  dom  .xb  )
)
124123ralxp 4843 . . . . . 6  |-  ( A. x  e.  ( ran  F  X.  ran  F ) x  e.  dom  .xb  <->  A. y  e.  ran  F A. z  e.  ran  F <. y ,  z >.  e.  dom  .xb  )
125122, 124sylibr 203 . . . . 5  |-  ( ph  ->  A. x  e.  ( ran  F  X.  ran  F ) x  e.  dom  .xb  )
126 dfss3 3183 . . . . 5  |-  ( ( ran  F  X.  ran  F )  C_  dom  .xb  <->  A. x  e.  ( ran  F  X.  ran  F ) x  e. 
dom  .xb  )
127125, 126sylibr 203 . . . 4  |-  ( ph  ->  ( ran  F  X.  ran  F )  C_  dom  .xb  )
12841, 127eqsstr3d 3226 . . 3  |-  ( ph  ->  ( B  X.  B
)  C_  dom  .xb  )
12938, 128eqssd 3209 . 2  |-  ( ph  ->  dom  .xb  =  ( B  X.  B ) )
130 df-fn 5274 . 2  |-  (  .xb  Fn  ( B  X.  B
)  <->  ( Fun  .xb  /\  dom  .xb  =  ( B  X.  B ) ) )
13197, 129, 130sylanbrc 645 1  |-  ( ph  -> 
.xb  Fn  ( B  X.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   A.wal 1530    = wceq 1632    e. wcel 1696   E*wmo 2157    =/= wne 2459   A.wral 2556   E.wrex 2557   _Vcvv 2801    C_ wss 3165   (/)c0 3468   {csn 3653   <.cop 3656   U_ciun 3921   class class class wbr 4039    X. cxp 4703   dom cdm 4705   ran crn 4706   Rel wrel 4710   Fun wfun 5265    Fn wfn 5266   -->wf 5267   -onto->wfo 5269   ` cfv 5271  (class class class)co 5874
This theorem is referenced by:  imasaddvallem  13447  imasaddflem  13448  imasaddfn  13449  imasmulfn  13452
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fo 5277  df-fv 5279
  Copyright terms: Public domain W3C validator