MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasdsf1o Structured version   Unicode version

Theorem imasdsf1o 18397
Description: The distance function is transferred across an image structure under a bijection. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
imasdsf1o.u  |-  ( ph  ->  U  =  ( F 
"s  R ) )
imasdsf1o.v  |-  ( ph  ->  V  =  ( Base `  R ) )
imasdsf1o.f  |-  ( ph  ->  F : V -1-1-onto-> B )
imasdsf1o.r  |-  ( ph  ->  R  e.  Z )
imasdsf1o.e  |-  E  =  ( ( dist `  R
)  |`  ( V  X.  V ) )
imasdsf1o.d  |-  D  =  ( dist `  U
)
imasdsf1o.m  |-  ( ph  ->  E  e.  ( * Met `  V ) )
imasdsf1o.x  |-  ( ph  ->  X  e.  V )
imasdsf1o.y  |-  ( ph  ->  Y  e.  V )
Assertion
Ref Expression
imasdsf1o  |-  ( ph  ->  ( ( F `  X ) D ( F `  Y ) )  =  ( X E Y ) )

Proof of Theorem imasdsf1o
Dummy variables  g  h  i  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasdsf1o.u . 2  |-  ( ph  ->  U  =  ( F 
"s  R ) )
2 imasdsf1o.v . 2  |-  ( ph  ->  V  =  ( Base `  R ) )
3 imasdsf1o.f . 2  |-  ( ph  ->  F : V -1-1-onto-> B )
4 imasdsf1o.r . 2  |-  ( ph  ->  R  e.  Z )
5 imasdsf1o.e . 2  |-  E  =  ( ( dist `  R
)  |`  ( V  X.  V ) )
6 imasdsf1o.d . 2  |-  D  =  ( dist `  U
)
7 imasdsf1o.m . 2  |-  ( ph  ->  E  e.  ( * Met `  V ) )
8 imasdsf1o.x . 2  |-  ( ph  ->  X  e.  V )
9 imasdsf1o.y . 2  |-  ( ph  ->  Y  e.  V )
10 eqid 2436 . 2  |-  ( RR* ss  ( RR*  \  {  -oo } ) )  =  (
RR* ss  ( RR*  \  {  -oo } ) )
11 eqid 2436 . 2  |-  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  ( F `  X )  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  ( F `
 Y )  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  =  {
h  e.  ( ( V  X.  V )  ^m  ( 1 ... n ) )  |  ( ( F `  ( 1st `  ( h `
 1 ) ) )  =  ( F `
 X )  /\  ( F `  ( 2nd `  ( h `  n
) ) )  =  ( F `  Y
)  /\  A. i  e.  ( 1 ... (
n  -  1 ) ) ( F `  ( 2nd `  ( h `
 i ) ) )  =  ( F `
 ( 1st `  (
h `  ( i  +  1 ) ) ) ) ) }
12 eqid 2436 . 2  |-  U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  ( F `  X )  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  ( F `
 Y )  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR* s  gsumg  ( E  o.  g
) ) )  = 
U_ n  e.  NN  ran  ( g  e.  {
h  e.  ( ( V  X.  V )  ^m  ( 1 ... n ) )  |  ( ( F `  ( 1st `  ( h `
 1 ) ) )  =  ( F `
 X )  /\  ( F `  ( 2nd `  ( h `  n
) ) )  =  ( F `  Y
)  /\  A. i  e.  ( 1 ... (
n  -  1 ) ) ( F `  ( 2nd `  ( h `
 i ) ) )  =  ( F `
 ( 1st `  (
h `  ( i  +  1 ) ) ) ) ) } 
|->  ( RR* s  gsumg  ( E  o.  g ) ) )
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12imasdsf1olem 18396 1  |-  ( ph  ->  ( ( F `  X ) D ( F `  Y ) )  =  ( X E Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2698   {crab 2702    \ cdif 3310   {csn 3807   U_ciun 4086    e. cmpt 4259    X. cxp 4869   ran crn 4872    |` cres 4873    o. ccom 4875   -1-1-onto->wf1o 5446   ` cfv 5447  (class class class)co 6074   1stc1st 6340   2ndc2nd 6341    ^m cmap 7011   1c1 8984    + caddc 8986    -oocmnf 9111   RR*cxr 9112    - cmin 9284   NNcn 9993   ...cfz 11036   Basecbs 13462   ↾s cress 13463   distcds 13531   RR* scxrs 13715    gsumg cgsu 13717    "s cimas 13723   * Metcxmt 16679
This theorem is referenced by:  imasf1oxmet  18398  imasf1omet  18399  xpsdsval  18404  imasf1obl  18511
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4313  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694  ax-inf2 7589  ax-cnex 9039  ax-resscn 9040  ax-1cn 9041  ax-icn 9042  ax-addcl 9043  ax-addrcl 9044  ax-mulcl 9045  ax-mulrcl 9046  ax-mulcom 9047  ax-addass 9048  ax-mulass 9049  ax-distr 9050  ax-i2m1 9051  ax-1ne0 9052  ax-1rid 9053  ax-rnegex 9054  ax-rrecex 9055  ax-cnre 9056  ax-pre-lttri 9057  ax-pre-lttrn 9058  ax-pre-ltadd 9059  ax-pre-mulgt0 9060  ax-pre-sup 9061
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2703  df-rex 2704  df-reu 2705  df-rmo 2706  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-pss 3329  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-tp 3815  df-op 3816  df-uni 4009  df-int 4044  df-iun 4088  df-iin 4089  df-br 4206  df-opab 4260  df-mpt 4261  df-tr 4296  df-eprel 4487  df-id 4491  df-po 4496  df-so 4497  df-fr 4534  df-se 4535  df-we 4536  df-ord 4577  df-on 4578  df-lim 4579  df-suc 4580  df-om 4839  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-isom 5456  df-ov 6077  df-oprab 6078  df-mpt2 6079  df-of 6298  df-1st 6342  df-2nd 6343  df-riota 6542  df-recs 6626  df-rdg 6661  df-1o 6717  df-oadd 6721  df-er 6898  df-map 7013  df-en 7103  df-dom 7104  df-sdom 7105  df-fin 7106  df-sup 7439  df-oi 7472  df-card 7819  df-pnf 9115  df-mnf 9116  df-xr 9117  df-ltxr 9118  df-le 9119  df-sub 9286  df-neg 9287  df-div 9671  df-nn 9994  df-2 10051  df-3 10052  df-4 10053  df-5 10054  df-6 10055  df-7 10056  df-8 10057  df-9 10058  df-10 10059  df-n0 10215  df-z 10276  df-dec 10376  df-uz 10482  df-rp 10606  df-xneg 10703  df-xadd 10704  df-xmul 10705  df-fz 11037  df-fzo 11129  df-seq 11317  df-hash 11612  df-struct 13464  df-ndx 13465  df-slot 13466  df-base 13467  df-sets 13468  df-ress 13469  df-plusg 13535  df-mulr 13536  df-sca 13538  df-vsca 13539  df-tset 13541  df-ple 13542  df-ds 13544  df-xrs 13719  df-0g 13720  df-gsum 13721  df-imas 13727  df-mre 13804  df-mrc 13805  df-acs 13807  df-mnd 14683  df-submnd 14732  df-mulg 14808  df-cntz 15109  df-cmn 15407  df-xmet 16688
  Copyright terms: Public domain W3C validator