MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasdsval Unicode version

Theorem imasdsval 13628
Description: The distance function of an image structure. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
imasbas.u  |-  ( ph  ->  U  =  ( F 
"s  R ) )
imasbas.v  |-  ( ph  ->  V  =  ( Base `  R ) )
imasbas.f  |-  ( ph  ->  F : V -onto-> B
)
imasbas.r  |-  ( ph  ->  R  e.  Z )
imasds.e  |-  E  =  ( dist `  R
)
imasds.d  |-  D  =  ( dist `  U
)
imasdsval.x  |-  ( ph  ->  X  e.  B )
imasdsval.y  |-  ( ph  ->  Y  e.  B )
imasdsval.s  |-  S  =  { h  e.  ( ( V  X.  V
)  ^m  ( 1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  X  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  Y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }
Assertion
Ref Expression
imasdsval  |-  ( ph  ->  ( X D Y )  =  sup ( U_ n  e.  NN  ran  ( g  e.  S  |->  ( RR* s  gsumg  ( E  o.  g ) ) ) ,  RR* ,  `'  <  ) )
Distinct variable groups:    g, h, i, n, F    R, g, h, i, n    ph, g, h, i, n    h, X, n    S, g    g, V, h    h, Y, n
Allowed substitution hints:    B( g, h, i, n)    D( g, h, i, n)    S( h, i, n)    U( g, h, i, n)    E( g, h, i, n)    V( i, n)    X( g, i)    Y( g, i)    Z( g, h, i, n)

Proof of Theorem imasdsval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasbas.u . . 3  |-  ( ph  ->  U  =  ( F 
"s  R ) )
2 imasbas.v . . 3  |-  ( ph  ->  V  =  ( Base `  R ) )
3 imasbas.f . . 3  |-  ( ph  ->  F : V -onto-> B
)
4 imasbas.r . . 3  |-  ( ph  ->  R  e.  Z )
5 imasds.e . . 3  |-  E  =  ( dist `  R
)
6 imasds.d . . 3  |-  D  =  ( dist `  U
)
71, 2, 3, 4, 5, 6imasds 13626 . 2  |-  ( ph  ->  D  =  ( x  e.  B ,  y  e.  B  |->  sup ( U_ n  e.  NN  ran  ( g  e.  {
h  e.  ( ( V  X.  V )  ^m  ( 1 ... n ) )  |  ( ( F `  ( 1st `  ( h `
 1 ) ) )  =  x  /\  ( F `  ( 2nd `  ( h `  n
) ) )  =  y  /\  A. i  e.  ( 1 ... (
n  -  1 ) ) ( F `  ( 2nd `  ( h `
 i ) ) )  =  ( F `
 ( 1st `  (
h `  ( i  +  1 ) ) ) ) ) } 
|->  ( RR* s  gsumg  ( E  o.  g ) ) ) ,  RR* ,  `'  <  ) ) )
8 simplrl 736 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  =  X  /\  y  =  Y )
)  /\  n  e.  NN )  ->  x  =  X )
98eqeq2d 2377 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  =  X  /\  y  =  Y )
)  /\  n  e.  NN )  ->  ( ( F `  ( 1st `  ( h `  1
) ) )  =  x  <->  ( F `  ( 1st `  ( h `
 1 ) ) )  =  X ) )
10 simplrr 737 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  =  X  /\  y  =  Y )
)  /\  n  e.  NN )  ->  y  =  Y )
1110eqeq2d 2377 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  =  X  /\  y  =  Y )
)  /\  n  e.  NN )  ->  ( ( F `  ( 2nd `  ( h `  n
) ) )  =  y  <->  ( F `  ( 2nd `  ( h `
 n ) ) )  =  Y ) )
129, 113anbi12d 1254 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  =  X  /\  y  =  Y )
)  /\  n  e.  NN )  ->  ( ( ( F `  ( 1st `  ( h ` 
1 ) ) )  =  x  /\  ( F `  ( 2nd `  ( h `  n
) ) )  =  y  /\  A. i  e.  ( 1 ... (
n  -  1 ) ) ( F `  ( 2nd `  ( h `
 i ) ) )  =  ( F `
 ( 1st `  (
h `  ( i  +  1 ) ) ) ) )  <->  ( ( F `  ( 1st `  ( h `  1
) ) )  =  X  /\  ( F `
 ( 2nd `  (
h `  n )
) )  =  Y  /\  A. i  e.  ( 1 ... (
n  -  1 ) ) ( F `  ( 2nd `  ( h `
 i ) ) )  =  ( F `
 ( 1st `  (
h `  ( i  +  1 ) ) ) ) ) ) )
1312rabbidv 2865 . . . . . . 7  |-  ( ( ( ph  /\  (
x  =  X  /\  y  =  Y )
)  /\  n  e.  NN )  ->  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  =  {
h  e.  ( ( V  X.  V )  ^m  ( 1 ... n ) )  |  ( ( F `  ( 1st `  ( h `
 1 ) ) )  =  X  /\  ( F `  ( 2nd `  ( h `  n
) ) )  =  Y  /\  A. i  e.  ( 1 ... (
n  -  1 ) ) ( F `  ( 2nd `  ( h `
 i ) ) )  =  ( F `
 ( 1st `  (
h `  ( i  +  1 ) ) ) ) ) } )
14 imasdsval.s . . . . . . 7  |-  S  =  { h  e.  ( ( V  X.  V
)  ^m  ( 1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  X  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  Y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }
1513, 14syl6eqr 2416 . . . . . 6  |-  ( ( ( ph  /\  (
x  =  X  /\  y  =  Y )
)  /\  n  e.  NN )  ->  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  =  S )
16 mpteq1 4202 . . . . . 6  |-  ( { h  e.  ( ( V  X.  V )  ^m  ( 1 ... n ) )  |  ( ( F `  ( 1st `  ( h `
 1 ) ) )  =  x  /\  ( F `  ( 2nd `  ( h `  n
) ) )  =  y  /\  A. i  e.  ( 1 ... (
n  -  1 ) ) ( F `  ( 2nd `  ( h `
 i ) ) )  =  ( F `
 ( 1st `  (
h `  ( i  +  1 ) ) ) ) ) }  =  S  ->  (
g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR* s  gsumg  ( E  o.  g
) ) )  =  ( g  e.  S  |->  ( RR* s  gsumg  ( E  o.  g ) ) ) )
1715, 16syl 15 . . . . 5  |-  ( ( ( ph  /\  (
x  =  X  /\  y  =  Y )
)  /\  n  e.  NN )  ->  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR* s  gsumg  ( E  o.  g
) ) )  =  ( g  e.  S  |->  ( RR* s  gsumg  ( E  o.  g ) ) ) )
1817rneqd 5009 . . . 4  |-  ( ( ( ph  /\  (
x  =  X  /\  y  =  Y )
)  /\  n  e.  NN )  ->  ran  (
g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR* s  gsumg  ( E  o.  g
) ) )  =  ran  ( g  e.  S  |->  ( RR* s  gsumg  ( E  o.  g ) ) ) )
1918iuneq2dv 4028 . . 3  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  ->  U_ n  e.  NN  ran  ( g  e.  {
h  e.  ( ( V  X.  V )  ^m  ( 1 ... n ) )  |  ( ( F `  ( 1st `  ( h `
 1 ) ) )  =  x  /\  ( F `  ( 2nd `  ( h `  n
) ) )  =  y  /\  A. i  e.  ( 1 ... (
n  -  1 ) ) ( F `  ( 2nd `  ( h `
 i ) ) )  =  ( F `
 ( 1st `  (
h `  ( i  +  1 ) ) ) ) ) } 
|->  ( RR* s  gsumg  ( E  o.  g ) ) )  =  U_ n  e.  NN  ran  ( g  e.  S  |->  ( RR* s  gsumg  ( E  o.  g
) ) ) )
2019supeq1d 7346 . 2  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  ->  sup ( U_ n  e.  NN  ran  ( g  e.  { h  e.  ( ( V  X.  V )  ^m  (
1 ... n ) )  |  ( ( F `
 ( 1st `  (
h `  1 )
) )  =  x  /\  ( F `  ( 2nd `  ( h `
 n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( F `  ( 2nd `  ( h `  i
) ) )  =  ( F `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR* s  gsumg  ( E  o.  g
) ) ) , 
RR* ,  `'  <  )  =  sup ( U_ n  e.  NN  ran  ( g  e.  S  |->  ( RR* s  gsumg  ( E  o.  g ) ) ) ,  RR* ,  `'  <  ) )
21 imasdsval.x . 2  |-  ( ph  ->  X  e.  B )
22 imasdsval.y . 2  |-  ( ph  ->  Y  e.  B )
23 xrltso 10627 . . . . 5  |-  <  Or  RR*
24 cnvso 5317 . . . . 5  |-  (  < 
Or  RR*  <->  `'  <  Or  RR* )
2523, 24mpbi 199 . . . 4  |-  `'  <  Or 
RR*
2625supex 7361 . . 3  |-  sup ( U_ n  e.  NN  ran  ( g  e.  S  |->  ( RR* s  gsumg  ( E  o.  g ) ) ) ,  RR* ,  `'  <  )  e.  _V
2726a1i 10 . 2  |-  ( ph  ->  sup ( U_ n  e.  NN  ran  ( g  e.  S  |->  ( RR* s  gsumg  ( E  o.  g
) ) ) , 
RR* ,  `'  <  )  e.  _V )
287, 20, 21, 22, 27ovmpt2d 6101 1  |-  ( ph  ->  ( X D Y )  =  sup ( U_ n  e.  NN  ran  ( g  e.  S  |->  ( RR* s  gsumg  ( E  o.  g ) ) ) ,  RR* ,  `'  <  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715   A.wral 2628   {crab 2632   _Vcvv 2873   U_ciun 4007    e. cmpt 4179    Or wor 4416    X. cxp 4790   `'ccnv 4791   ran crn 4793    o. ccom 4796   -onto->wfo 5356   ` cfv 5358  (class class class)co 5981   1stc1st 6247   2ndc2nd 6248    ^m cmap 6915   supcsup 7340   1c1 8885    + caddc 8887   RR*cxr 9013    < clt 9014    - cmin 9184   NNcn 9893   ...cfz 10935   Basecbs 13356   distcds 13425   RR* scxrs 13609    gsumg cgsu 13611    "s cimas 13617
This theorem is referenced by:  imasdsval2  13629
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-riota 6446  df-recs 6530  df-rdg 6565  df-1o 6621  df-oadd 6625  df-er 6802  df-en 7007  df-dom 7008  df-sdom 7009  df-fin 7010  df-sup 7341  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-nn 9894  df-2 9951  df-3 9952  df-4 9953  df-5 9954  df-6 9955  df-7 9956  df-8 9957  df-9 9958  df-10 9959  df-n0 10115  df-z 10176  df-dec 10276  df-uz 10382  df-fz 10936  df-struct 13358  df-ndx 13359  df-slot 13360  df-base 13361  df-plusg 13429  df-mulr 13430  df-sca 13432  df-vsca 13433  df-tset 13435  df-ple 13436  df-ds 13438  df-imas 13621
  Copyright terms: Public domain W3C validator