MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasf1obl Unicode version

Theorem imasf1obl 18034
Description: The image of a metric space ball. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
imasf1obl.u  |-  ( ph  ->  U  =  ( F 
"s  R ) )
imasf1obl.v  |-  ( ph  ->  V  =  ( Base `  R ) )
imasf1obl.f  |-  ( ph  ->  F : V -1-1-onto-> B )
imasf1obl.r  |-  ( ph  ->  R  e.  Z )
imasf1obl.e  |-  E  =  ( ( dist `  R
)  |`  ( V  X.  V ) )
imasf1obl.d  |-  D  =  ( dist `  U
)
imasf1obl.m  |-  ( ph  ->  E  e.  ( * Met `  V ) )
imasf1obl.x  |-  ( ph  ->  P  e.  V )
imasf1obl.s  |-  ( ph  ->  S  e.  RR* )
Assertion
Ref Expression
imasf1obl  |-  ( ph  ->  ( ( F `  P ) ( ball `  D ) S )  =  ( F "
( P ( ball `  E ) S ) ) )

Proof of Theorem imasf1obl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 imasf1obl.f . . . . . . . . . 10  |-  ( ph  ->  F : V -1-1-onto-> B )
2 f1ocnvfv2 5793 . . . . . . . . . 10  |-  ( ( F : V -1-1-onto-> B  /\  x  e.  B )  ->  ( F `  ( `' F `  x ) )  =  x )
31, 2sylan 457 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B )  ->  ( F `  ( `' F `  x )
)  =  x )
43oveq2d 5874 . . . . . . . 8  |-  ( (
ph  /\  x  e.  B )  ->  (
( F `  P
) D ( F `
 ( `' F `  x ) ) )  =  ( ( F `
 P ) D x ) )
5 imasf1obl.u . . . . . . . . . 10  |-  ( ph  ->  U  =  ( F 
"s  R ) )
65adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B )  ->  U  =  ( F  "s  R
) )
7 imasf1obl.v . . . . . . . . . 10  |-  ( ph  ->  V  =  ( Base `  R ) )
87adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B )  ->  V  =  ( Base `  R
) )
91adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B )  ->  F : V -1-1-onto-> B )
10 imasf1obl.r . . . . . . . . . 10  |-  ( ph  ->  R  e.  Z )
1110adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B )  ->  R  e.  Z )
12 imasf1obl.e . . . . . . . . 9  |-  E  =  ( ( dist `  R
)  |`  ( V  X.  V ) )
13 imasf1obl.d . . . . . . . . 9  |-  D  =  ( dist `  U
)
14 imasf1obl.m . . . . . . . . . 10  |-  ( ph  ->  E  e.  ( * Met `  V ) )
1514adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B )  ->  E  e.  ( * Met `  V
) )
16 imasf1obl.x . . . . . . . . . 10  |-  ( ph  ->  P  e.  V )
1716adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B )  ->  P  e.  V )
18 f1ocnv 5485 . . . . . . . . . . . 12  |-  ( F : V -1-1-onto-> B  ->  `' F : B -1-1-onto-> V )
191, 18syl 15 . . . . . . . . . . 11  |-  ( ph  ->  `' F : B -1-1-onto-> V )
20 f1of 5472 . . . . . . . . . . 11  |-  ( `' F : B -1-1-onto-> V  ->  `' F : B --> V )
2119, 20syl 15 . . . . . . . . . 10  |-  ( ph  ->  `' F : B --> V )
22 ffvelrn 5663 . . . . . . . . . 10  |-  ( ( `' F : B --> V  /\  x  e.  B )  ->  ( `' F `  x )  e.  V
)
2321, 22sylan 457 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B )  ->  ( `' F `  x )  e.  V )
246, 8, 9, 11, 12, 13, 15, 17, 23imasdsf1o 17938 . . . . . . . 8  |-  ( (
ph  /\  x  e.  B )  ->  (
( F `  P
) D ( F `
 ( `' F `  x ) ) )  =  ( P E ( `' F `  x ) ) )
254, 24eqtr3d 2317 . . . . . . 7  |-  ( (
ph  /\  x  e.  B )  ->  (
( F `  P
) D x )  =  ( P E ( `' F `  x ) ) )
2625breq1d 4033 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  (
( ( F `  P ) D x )  <  S  <->  ( P E ( `' F `  x ) )  < 
S ) )
27 imasf1obl.s . . . . . . . 8  |-  ( ph  ->  S  e.  RR* )
2827adantr 451 . . . . . . 7  |-  ( (
ph  /\  x  e.  B )  ->  S  e.  RR* )
29 elbl2 17950 . . . . . . 7  |-  ( ( ( E  e.  ( * Met `  V
)  /\  S  e.  RR* )  /\  ( P  e.  V  /\  ( `' F `  x )  e.  V ) )  ->  ( ( `' F `  x )  e.  ( P (
ball `  E ) S )  <->  ( P E ( `' F `  x ) )  < 
S ) )
3015, 28, 17, 23, 29syl22anc 1183 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  (
( `' F `  x )  e.  ( P ( ball `  E
) S )  <->  ( P E ( `' F `  x ) )  < 
S ) )
3126, 30bitr4d 247 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  (
( ( F `  P ) D x )  <  S  <->  ( `' F `  x )  e.  ( P ( ball `  E ) S ) ) )
3231pm5.32da 622 . . . 4  |-  ( ph  ->  ( ( x  e.  B  /\  ( ( F `  P ) D x )  < 
S )  <->  ( x  e.  B  /\  ( `' F `  x )  e.  ( P (
ball `  E ) S ) ) ) )
335, 7, 1, 10, 12, 13, 14imasf1oxmet 17939 . . . . 5  |-  ( ph  ->  D  e.  ( * Met `  B ) )
34 f1of 5472 . . . . . . 7  |-  ( F : V -1-1-onto-> B  ->  F : V
--> B )
351, 34syl 15 . . . . . 6  |-  ( ph  ->  F : V --> B )
36 ffvelrn 5663 . . . . . 6  |-  ( ( F : V --> B  /\  P  e.  V )  ->  ( F `  P
)  e.  B )
3735, 16, 36syl2anc 642 . . . . 5  |-  ( ph  ->  ( F `  P
)  e.  B )
38 elbl 17949 . . . . 5  |-  ( ( D  e.  ( * Met `  B )  /\  ( F `  P )  e.  B  /\  S  e.  RR* )  ->  ( x  e.  ( ( F `  P
) ( ball `  D
) S )  <->  ( x  e.  B  /\  (
( F `  P
) D x )  <  S ) ) )
3933, 37, 27, 38syl3anc 1182 . . . 4  |-  ( ph  ->  ( x  e.  ( ( F `  P
) ( ball `  D
) S )  <->  ( x  e.  B  /\  (
( F `  P
) D x )  <  S ) ) )
40 f1ofn 5473 . . . . 5  |-  ( `' F : B -1-1-onto-> V  ->  `' F  Fn  B
)
41 elpreima 5645 . . . . 5  |-  ( `' F  Fn  B  -> 
( x  e.  ( `' `' F " ( P ( ball `  E
) S ) )  <-> 
( x  e.  B  /\  ( `' F `  x )  e.  ( P ( ball `  E
) S ) ) ) )
4219, 40, 413syl 18 . . . 4  |-  ( ph  ->  ( x  e.  ( `' `' F " ( P ( ball `  E
) S ) )  <-> 
( x  e.  B  /\  ( `' F `  x )  e.  ( P ( ball `  E
) S ) ) ) )
4332, 39, 423bitr4d 276 . . 3  |-  ( ph  ->  ( x  e.  ( ( F `  P
) ( ball `  D
) S )  <->  x  e.  ( `' `' F " ( P ( ball `  E
) S ) ) ) )
4443eqrdv 2281 . 2  |-  ( ph  ->  ( ( F `  P ) ( ball `  D ) S )  =  ( `' `' F " ( P (
ball `  E ) S ) ) )
45 imacnvcnv 5137 . 2  |-  ( `' `' F " ( P ( ball `  E
) S ) )  =  ( F "
( P ( ball `  E ) S ) )
4644, 45syl6eq 2331 1  |-  ( ph  ->  ( ( F `  P ) ( ball `  D ) S )  =  ( F "
( P ( ball `  E ) S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   class class class wbr 4023    X. cxp 4687   `'ccnv 4688    |` cres 4691   "cima 4692    Fn wfn 5250   -->wf 5251   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5858   RR*cxr 8866    < clt 8867   Basecbs 13148   distcds 13217    "s cimas 13407   * Metcxmt 16369   ballcbl 16371
This theorem is referenced by:  imasf1oxms  18035
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-fz 10783  df-fzo 10871  df-seq 11047  df-hash 11338  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-xrs 13403  df-0g 13404  df-gsum 13405  df-imas 13411  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-bl 16375
  Copyright terms: Public domain W3C validator