MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasf1oxmet Structured version   Unicode version

Theorem imasf1oxmet 18397
Description: The image of an extended metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
imasf1oxmet.u  |-  ( ph  ->  U  =  ( F 
"s  R ) )
imasf1oxmet.v  |-  ( ph  ->  V  =  ( Base `  R ) )
imasf1oxmet.f  |-  ( ph  ->  F : V -1-1-onto-> B )
imasf1oxmet.r  |-  ( ph  ->  R  e.  Z )
imasf1oxmet.e  |-  E  =  ( ( dist `  R
)  |`  ( V  X.  V ) )
imasf1oxmet.d  |-  D  =  ( dist `  U
)
imasf1oxmet.m  |-  ( ph  ->  E  e.  ( * Met `  V ) )
Assertion
Ref Expression
imasf1oxmet  |-  ( ph  ->  D  e.  ( * Met `  B ) )

Proof of Theorem imasf1oxmet
Dummy variables  a 
b  x  y  z  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasf1oxmet.u . . . 4  |-  ( ph  ->  U  =  ( F 
"s  R ) )
2 imasf1oxmet.v . . . 4  |-  ( ph  ->  V  =  ( Base `  R ) )
3 imasf1oxmet.f . . . . 5  |-  ( ph  ->  F : V -1-1-onto-> B )
4 f1ofo 5673 . . . . 5  |-  ( F : V -1-1-onto-> B  ->  F : V -onto-> B )
53, 4syl 16 . . . 4  |-  ( ph  ->  F : V -onto-> B
)
6 imasf1oxmet.r . . . 4  |-  ( ph  ->  R  e.  Z )
7 eqid 2435 . . . 4  |-  ( dist `  R )  =  (
dist `  R )
8 imasf1oxmet.d . . . 4  |-  D  =  ( dist `  U
)
91, 2, 5, 6, 7, 8imasdsfn 13732 . . 3  |-  ( ph  ->  D  Fn  ( B  X.  B ) )
101adantr 452 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  ->  U  =  ( F  "s  R ) )
112adantr 452 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  ->  V  =  ( Base `  R ) )
123adantr 452 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  ->  F : V -1-1-onto-> B )
136adantr 452 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  ->  R  e.  Z )
14 imasf1oxmet.e . . . . . . . 8  |-  E  =  ( ( dist `  R
)  |`  ( V  X.  V ) )
15 imasf1oxmet.m . . . . . . . . 9  |-  ( ph  ->  E  e.  ( * Met `  V ) )
1615adantr 452 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  ->  E  e.  ( * Met `  V ) )
17 simprl 733 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
a  e.  V )
18 simprr 734 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
b  e.  V )
1910, 11, 12, 13, 14, 8, 16, 17, 18imasdsf1o 18396 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
( ( F `  a ) D ( F `  b ) )  =  ( a E b ) )
20 xmetcl 18353 . . . . . . . . 9  |-  ( ( E  e.  ( * Met `  V )  /\  a  e.  V  /\  b  e.  V
)  ->  ( a E b )  e. 
RR* )
21203expb 1154 . . . . . . . 8  |-  ( ( E  e.  ( * Met `  V )  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
( a E b )  e.  RR* )
2215, 21sylan 458 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
( a E b )  e.  RR* )
2319, 22eqeltrd 2509 . . . . . 6  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
( ( F `  a ) D ( F `  b ) )  e.  RR* )
2423ralrimivva 2790 . . . . 5  |-  ( ph  ->  A. a  e.  V  A. b  e.  V  ( ( F `  a ) D ( F `  b ) )  e.  RR* )
25 f1ofn 5667 . . . . . . . . 9  |-  ( F : V -1-1-onto-> B  ->  F  Fn  V )
263, 25syl 16 . . . . . . . 8  |-  ( ph  ->  F  Fn  V )
27 oveq2 6081 . . . . . . . . . 10  |-  ( y  =  ( F `  b )  ->  (
( F `  a
) D y )  =  ( ( F `
 a ) D ( F `  b
) ) )
2827eleq1d 2501 . . . . . . . . 9  |-  ( y  =  ( F `  b )  ->  (
( ( F `  a ) D y )  e.  RR*  <->  ( ( F `  a ) D ( F `  b ) )  e. 
RR* ) )
2928ralrn 5865 . . . . . . . 8  |-  ( F  Fn  V  ->  ( A. y  e.  ran  F ( ( F `  a ) D y )  e.  RR*  <->  A. b  e.  V  ( ( F `  a ) D ( F `  b ) )  e. 
RR* ) )
3026, 29syl 16 . . . . . . 7  |-  ( ph  ->  ( A. y  e. 
ran  F ( ( F `  a ) D y )  e. 
RR* 
<-> 
A. b  e.  V  ( ( F `  a ) D ( F `  b ) )  e.  RR* )
)
31 forn 5648 . . . . . . . . 9  |-  ( F : V -onto-> B  ->  ran  F  =  B )
325, 31syl 16 . . . . . . . 8  |-  ( ph  ->  ran  F  =  B )
3332raleqdv 2902 . . . . . . 7  |-  ( ph  ->  ( A. y  e. 
ran  F ( ( F `  a ) D y )  e. 
RR* 
<-> 
A. y  e.  B  ( ( F `  a ) D y )  e.  RR* )
)
3430, 33bitr3d 247 . . . . . 6  |-  ( ph  ->  ( A. b  e.  V  ( ( F `
 a ) D ( F `  b
) )  e.  RR*  <->  A. y  e.  B  (
( F `  a
) D y )  e.  RR* ) )
3534ralbidv 2717 . . . . 5  |-  ( ph  ->  ( A. a  e.  V  A. b  e.  V  ( ( F `
 a ) D ( F `  b
) )  e.  RR*  <->  A. a  e.  V  A. y  e.  B  (
( F `  a
) D y )  e.  RR* ) )
3624, 35mpbid 202 . . . 4  |-  ( ph  ->  A. a  e.  V  A. y  e.  B  ( ( F `  a ) D y )  e.  RR* )
37 oveq1 6080 . . . . . . . . 9  |-  ( x  =  ( F `  a )  ->  (
x D y )  =  ( ( F `
 a ) D y ) )
3837eleq1d 2501 . . . . . . . 8  |-  ( x  =  ( F `  a )  ->  (
( x D y )  e.  RR*  <->  ( ( F `  a ) D y )  e. 
RR* ) )
3938ralbidv 2717 . . . . . . 7  |-  ( x  =  ( F `  a )  ->  ( A. y  e.  B  ( x D y )  e.  RR*  <->  A. y  e.  B  ( ( F `  a ) D y )  e. 
RR* ) )
4039ralrn 5865 . . . . . 6  |-  ( F  Fn  V  ->  ( A. x  e.  ran  F A. y  e.  B  ( x D y )  e.  RR*  <->  A. a  e.  V  A. y  e.  B  ( ( F `  a ) D y )  e. 
RR* ) )
4126, 40syl 16 . . . . 5  |-  ( ph  ->  ( A. x  e. 
ran  F A. y  e.  B  ( x D y )  e. 
RR* 
<-> 
A. a  e.  V  A. y  e.  B  ( ( F `  a ) D y )  e.  RR* )
)
4232raleqdv 2902 . . . . 5  |-  ( ph  ->  ( A. x  e. 
ran  F A. y  e.  B  ( x D y )  e. 
RR* 
<-> 
A. x  e.  B  A. y  e.  B  ( x D y )  e.  RR* )
)
4341, 42bitr3d 247 . . . 4  |-  ( ph  ->  ( A. a  e.  V  A. y  e.  B  ( ( F `
 a ) D y )  e.  RR*  <->  A. x  e.  B  A. y  e.  B  (
x D y )  e.  RR* ) )
4436, 43mpbid 202 . . 3  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  ( x D y )  e.  RR* )
45 ffnov 6166 . . 3  |-  ( D : ( B  X.  B ) --> RR*  <->  ( D  Fn  ( B  X.  B
)  /\  A. x  e.  B  A. y  e.  B  ( x D y )  e. 
RR* ) )
469, 44, 45sylanbrc 646 . 2  |-  ( ph  ->  D : ( B  X.  B ) --> RR* )
47 xmeteq0 18360 . . . . . . . 8  |-  ( ( E  e.  ( * Met `  V )  /\  a  e.  V  /\  b  e.  V
)  ->  ( (
a E b )  =  0  <->  a  =  b ) )
4816, 17, 18, 47syl3anc 1184 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
( ( a E b )  =  0  <-> 
a  =  b ) )
4919eqeq1d 2443 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
( ( ( F `
 a ) D ( F `  b
) )  =  0  <-> 
( a E b )  =  0 ) )
50 f1of1 5665 . . . . . . . . 9  |-  ( F : V -1-1-onto-> B  ->  F : V -1-1-> B )
513, 50syl 16 . . . . . . . 8  |-  ( ph  ->  F : V -1-1-> B
)
52 f1fveq 6000 . . . . . . . 8  |-  ( ( F : V -1-1-> B  /\  ( a  e.  V  /\  b  e.  V
) )  ->  (
( F `  a
)  =  ( F `
 b )  <->  a  =  b ) )
5351, 52sylan 458 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
( ( F `  a )  =  ( F `  b )  <-> 
a  =  b ) )
5448, 49, 533bitr4d 277 . . . . . 6  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
( ( ( F `
 a ) D ( F `  b
) )  =  0  <-> 
( F `  a
)  =  ( F `
 b ) ) )
5516adantr 452 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  c  e.  V )  ->  E  e.  ( * Met `  V
) )
56 simpr 448 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  c  e.  V )  ->  c  e.  V )
5717adantr 452 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  c  e.  V )  ->  a  e.  V )
5818adantr 452 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  c  e.  V )  ->  b  e.  V )
59 xmettri2 18362 . . . . . . . . . 10  |-  ( ( E  e.  ( * Met `  V )  /\  ( c  e.  V  /\  a  e.  V  /\  b  e.  V ) )  -> 
( a E b )  <_  ( (
c E a ) + e ( c E b ) ) )
6055, 56, 57, 58, 59syl13anc 1186 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  c  e.  V )  ->  (
a E b )  <_  ( ( c E a ) + e ( c E b ) ) )
6119adantr 452 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  c  e.  V )  ->  (
( F `  a
) D ( F `
 b ) )  =  ( a E b ) )
6210adantr 452 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  c  e.  V )  ->  U  =  ( F  "s  R
) )
6311adantr 452 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  c  e.  V )  ->  V  =  ( Base `  R
) )
6412adantr 452 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  c  e.  V )  ->  F : V -1-1-onto-> B )
6513adantr 452 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  c  e.  V )  ->  R  e.  Z )
6662, 63, 64, 65, 14, 8, 55, 56, 57imasdsf1o 18396 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  c  e.  V )  ->  (
( F `  c
) D ( F `
 a ) )  =  ( c E a ) )
6762, 63, 64, 65, 14, 8, 55, 56, 58imasdsf1o 18396 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  c  e.  V )  ->  (
( F `  c
) D ( F `
 b ) )  =  ( c E b ) )
6866, 67oveq12d 6091 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  c  e.  V )  ->  (
( ( F `  c ) D ( F `  a ) ) + e ( ( F `  c
) D ( F `
 b ) ) )  =  ( ( c E a ) + e ( c E b ) ) )
6960, 61, 683brtr4d 4234 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  V  /\  b  e.  V )
)  /\  c  e.  V )  ->  (
( F `  a
) D ( F `
 b ) )  <_  ( ( ( F `  c ) D ( F `  a ) ) + e ( ( F `
 c ) D ( F `  b
) ) ) )
7069ralrimiva 2781 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  ->  A. c  e.  V  ( ( F `  a ) D ( F `  b ) )  <_  ( (
( F `  c
) D ( F `
 a ) ) + e ( ( F `  c ) D ( F `  b ) ) ) )
71 oveq1 6080 . . . . . . . . . . . . 13  |-  ( z  =  ( F `  c )  ->  (
z D ( F `
 a ) )  =  ( ( F `
 c ) D ( F `  a
) ) )
72 oveq1 6080 . . . . . . . . . . . . 13  |-  ( z  =  ( F `  c )  ->  (
z D ( F `
 b ) )  =  ( ( F `
 c ) D ( F `  b
) ) )
7371, 72oveq12d 6091 . . . . . . . . . . . 12  |-  ( z  =  ( F `  c )  ->  (
( z D ( F `  a ) ) + e ( z D ( F `
 b ) ) )  =  ( ( ( F `  c
) D ( F `
 a ) ) + e ( ( F `  c ) D ( F `  b ) ) ) )
7473breq2d 4216 . . . . . . . . . . 11  |-  ( z  =  ( F `  c )  ->  (
( ( F `  a ) D ( F `  b ) )  <_  ( (
z D ( F `
 a ) ) + e ( z D ( F `  b ) ) )  <-> 
( ( F `  a ) D ( F `  b ) )  <_  ( (
( F `  c
) D ( F `
 a ) ) + e ( ( F `  c ) D ( F `  b ) ) ) ) )
7574ralrn 5865 . . . . . . . . . 10  |-  ( F  Fn  V  ->  ( A. z  e.  ran  F ( ( F `  a ) D ( F `  b ) )  <_  ( (
z D ( F `
 a ) ) + e ( z D ( F `  b ) ) )  <->  A. c  e.  V  ( ( F `  a ) D ( F `  b ) )  <_  ( (
( F `  c
) D ( F `
 a ) ) + e ( ( F `  c ) D ( F `  b ) ) ) ) )
7626, 75syl 16 . . . . . . . . 9  |-  ( ph  ->  ( A. z  e. 
ran  F ( ( F `  a ) D ( F `  b ) )  <_ 
( ( z D ( F `  a
) ) + e
( z D ( F `  b ) ) )  <->  A. c  e.  V  ( ( F `  a ) D ( F `  b ) )  <_ 
( ( ( F `
 c ) D ( F `  a
) ) + e
( ( F `  c ) D ( F `  b ) ) ) ) )
7732raleqdv 2902 . . . . . . . . 9  |-  ( ph  ->  ( A. z  e. 
ran  F ( ( F `  a ) D ( F `  b ) )  <_ 
( ( z D ( F `  a
) ) + e
( z D ( F `  b ) ) )  <->  A. z  e.  B  ( ( F `  a ) D ( F `  b ) )  <_ 
( ( z D ( F `  a
) ) + e
( z D ( F `  b ) ) ) ) )
7876, 77bitr3d 247 . . . . . . . 8  |-  ( ph  ->  ( A. c  e.  V  ( ( F `
 a ) D ( F `  b
) )  <_  (
( ( F `  c ) D ( F `  a ) ) + e ( ( F `  c
) D ( F `
 b ) ) )  <->  A. z  e.  B  ( ( F `  a ) D ( F `  b ) )  <_  ( (
z D ( F `
 a ) ) + e ( z D ( F `  b ) ) ) ) )
7978adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
( A. c  e.  V  ( ( F `
 a ) D ( F `  b
) )  <_  (
( ( F `  c ) D ( F `  a ) ) + e ( ( F `  c
) D ( F `
 b ) ) )  <->  A. z  e.  B  ( ( F `  a ) D ( F `  b ) )  <_  ( (
z D ( F `
 a ) ) + e ( z D ( F `  b ) ) ) ) )
8070, 79mpbid 202 . . . . . 6  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  ->  A. z  e.  B  ( ( F `  a ) D ( F `  b ) )  <_  ( (
z D ( F `
 a ) ) + e ( z D ( F `  b ) ) ) )
8154, 80jca 519 . . . . 5  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
( ( ( ( F `  a ) D ( F `  b ) )  =  0  <->  ( F `  a )  =  ( F `  b ) )  /\  A. z  e.  B  ( ( F `  a ) D ( F `  b ) )  <_ 
( ( z D ( F `  a
) ) + e
( z D ( F `  b ) ) ) ) )
8281ralrimivva 2790 . . . 4  |-  ( ph  ->  A. a  e.  V  A. b  e.  V  ( ( ( ( F `  a ) D ( F `  b ) )  =  0  <->  ( F `  a )  =  ( F `  b ) )  /\  A. z  e.  B  ( ( F `  a ) D ( F `  b ) )  <_ 
( ( z D ( F `  a
) ) + e
( z D ( F `  b ) ) ) ) )
8327eqeq1d 2443 . . . . . . . . . 10  |-  ( y  =  ( F `  b )  ->  (
( ( F `  a ) D y )  =  0  <->  (
( F `  a
) D ( F `
 b ) )  =  0 ) )
84 eqeq2 2444 . . . . . . . . . 10  |-  ( y  =  ( F `  b )  ->  (
( F `  a
)  =  y  <->  ( F `  a )  =  ( F `  b ) ) )
8583, 84bibi12d 313 . . . . . . . . 9  |-  ( y  =  ( F `  b )  ->  (
( ( ( F `
 a ) D y )  =  0  <-> 
( F `  a
)  =  y )  <-> 
( ( ( F `
 a ) D ( F `  b
) )  =  0  <-> 
( F `  a
)  =  ( F `
 b ) ) ) )
86 oveq2 6081 . . . . . . . . . . . 12  |-  ( y  =  ( F `  b )  ->  (
z D y )  =  ( z D ( F `  b
) ) )
8786oveq2d 6089 . . . . . . . . . . 11  |-  ( y  =  ( F `  b )  ->  (
( z D ( F `  a ) ) + e ( z D y ) )  =  ( ( z D ( F `
 a ) ) + e ( z D ( F `  b ) ) ) )
8827, 87breq12d 4217 . . . . . . . . . 10  |-  ( y  =  ( F `  b )  ->  (
( ( F `  a ) D y )  <_  ( (
z D ( F `
 a ) ) + e ( z D y ) )  <-> 
( ( F `  a ) D ( F `  b ) )  <_  ( (
z D ( F `
 a ) ) + e ( z D ( F `  b ) ) ) ) )
8988ralbidv 2717 . . . . . . . . 9  |-  ( y  =  ( F `  b )  ->  ( A. z  e.  B  ( ( F `  a ) D y )  <_  ( (
z D ( F `
 a ) ) + e ( z D y ) )  <->  A. z  e.  B  ( ( F `  a ) D ( F `  b ) )  <_  ( (
z D ( F `
 a ) ) + e ( z D ( F `  b ) ) ) ) )
9085, 89anbi12d 692 . . . . . . . 8  |-  ( y  =  ( F `  b )  ->  (
( ( ( ( F `  a ) D y )  =  0  <->  ( F `  a )  =  y )  /\  A. z  e.  B  ( ( F `  a ) D y )  <_ 
( ( z D ( F `  a
) ) + e
( z D y ) ) )  <->  ( (
( ( F `  a ) D ( F `  b ) )  =  0  <->  ( F `  a )  =  ( F `  b ) )  /\  A. z  e.  B  ( ( F `  a
) D ( F `
 b ) )  <_  ( ( z D ( F `  a ) ) + e ( z D ( F `  b
) ) ) ) ) )
9190ralrn 5865 . . . . . . 7  |-  ( F  Fn  V  ->  ( A. y  e.  ran  F ( ( ( ( F `  a ) D y )  =  0  <->  ( F `  a )  =  y )  /\  A. z  e.  B  ( ( F `  a ) D y )  <_ 
( ( z D ( F `  a
) ) + e
( z D y ) ) )  <->  A. b  e.  V  ( (
( ( F `  a ) D ( F `  b ) )  =  0  <->  ( F `  a )  =  ( F `  b ) )  /\  A. z  e.  B  ( ( F `  a
) D ( F `
 b ) )  <_  ( ( z D ( F `  a ) ) + e ( z D ( F `  b
) ) ) ) ) )
9226, 91syl 16 . . . . . 6  |-  ( ph  ->  ( A. y  e. 
ran  F ( ( ( ( F `  a ) D y )  =  0  <->  ( F `  a )  =  y )  /\  A. z  e.  B  ( ( F `  a
) D y )  <_  ( ( z D ( F `  a ) ) + e ( z D y ) ) )  <->  A. b  e.  V  ( ( ( ( F `  a ) D ( F `  b ) )  =  0  <->  ( F `  a )  =  ( F `  b ) )  /\  A. z  e.  B  ( ( F `  a ) D ( F `  b ) )  <_ 
( ( z D ( F `  a
) ) + e
( z D ( F `  b ) ) ) ) ) )
9332raleqdv 2902 . . . . . 6  |-  ( ph  ->  ( A. y  e. 
ran  F ( ( ( ( F `  a ) D y )  =  0  <->  ( F `  a )  =  y )  /\  A. z  e.  B  ( ( F `  a
) D y )  <_  ( ( z D ( F `  a ) ) + e ( z D y ) ) )  <->  A. y  e.  B  ( ( ( ( F `  a ) D y )  =  0  <->  ( F `  a )  =  y )  /\  A. z  e.  B  ( ( F `  a ) D y )  <_ 
( ( z D ( F `  a
) ) + e
( z D y ) ) ) ) )
9492, 93bitr3d 247 . . . . 5  |-  ( ph  ->  ( A. b  e.  V  ( ( ( ( F `  a
) D ( F `
 b ) )  =  0  <->  ( F `  a )  =  ( F `  b ) )  /\  A. z  e.  B  ( ( F `  a ) D ( F `  b ) )  <_ 
( ( z D ( F `  a
) ) + e
( z D ( F `  b ) ) ) )  <->  A. y  e.  B  ( (
( ( F `  a ) D y )  =  0  <->  ( F `  a )  =  y )  /\  A. z  e.  B  ( ( F `  a
) D y )  <_  ( ( z D ( F `  a ) ) + e ( z D y ) ) ) ) )
9594ralbidv 2717 . . . 4  |-  ( ph  ->  ( A. a  e.  V  A. b  e.  V  ( ( ( ( F `  a
) D ( F `
 b ) )  =  0  <->  ( F `  a )  =  ( F `  b ) )  /\  A. z  e.  B  ( ( F `  a ) D ( F `  b ) )  <_ 
( ( z D ( F `  a
) ) + e
( z D ( F `  b ) ) ) )  <->  A. a  e.  V  A. y  e.  B  ( (
( ( F `  a ) D y )  =  0  <->  ( F `  a )  =  y )  /\  A. z  e.  B  ( ( F `  a
) D y )  <_  ( ( z D ( F `  a ) ) + e ( z D y ) ) ) ) )
9682, 95mpbid 202 . . 3  |-  ( ph  ->  A. a  e.  V  A. y  e.  B  ( ( ( ( F `  a ) D y )  =  0  <->  ( F `  a )  =  y )  /\  A. z  e.  B  ( ( F `  a ) D y )  <_ 
( ( z D ( F `  a
) ) + e
( z D y ) ) ) )
9737eqeq1d 2443 . . . . . . . . 9  |-  ( x  =  ( F `  a )  ->  (
( x D y )  =  0  <->  (
( F `  a
) D y )  =  0 ) )
98 eqeq1 2441 . . . . . . . . 9  |-  ( x  =  ( F `  a )  ->  (
x  =  y  <->  ( F `  a )  =  y ) )
9997, 98bibi12d 313 . . . . . . . 8  |-  ( x  =  ( F `  a )  ->  (
( ( x D y )  =  0  <-> 
x  =  y )  <-> 
( ( ( F `
 a ) D y )  =  0  <-> 
( F `  a
)  =  y ) ) )
100 oveq2 6081 . . . . . . . . . . 11  |-  ( x  =  ( F `  a )  ->  (
z D x )  =  ( z D ( F `  a
) ) )
101100oveq1d 6088 . . . . . . . . . 10  |-  ( x  =  ( F `  a )  ->  (
( z D x ) + e ( z D y ) )  =  ( ( z D ( F `
 a ) ) + e ( z D y ) ) )
10237, 101breq12d 4217 . . . . . . . . 9  |-  ( x  =  ( F `  a )  ->  (
( x D y )  <_  ( (
z D x ) + e ( z D y ) )  <-> 
( ( F `  a ) D y )  <_  ( (
z D ( F `
 a ) ) + e ( z D y ) ) ) )
103102ralbidv 2717 . . . . . . . 8  |-  ( x  =  ( F `  a )  ->  ( A. z  e.  B  ( x D y )  <_  ( (
z D x ) + e ( z D y ) )  <->  A. z  e.  B  ( ( F `  a ) D y )  <_  ( (
z D ( F `
 a ) ) + e ( z D y ) ) ) )
10499, 103anbi12d 692 . . . . . . 7  |-  ( x  =  ( F `  a )  ->  (
( ( ( x D y )  =  0  <->  x  =  y
)  /\  A. z  e.  B  ( x D y )  <_ 
( ( z D x ) + e
( z D y ) ) )  <->  ( (
( ( F `  a ) D y )  =  0  <->  ( F `  a )  =  y )  /\  A. z  e.  B  ( ( F `  a
) D y )  <_  ( ( z D ( F `  a ) ) + e ( z D y ) ) ) ) )
105104ralbidv 2717 . . . . . 6  |-  ( x  =  ( F `  a )  ->  ( A. y  e.  B  ( ( ( x D y )  =  0  <->  x  =  y
)  /\  A. z  e.  B  ( x D y )  <_ 
( ( z D x ) + e
( z D y ) ) )  <->  A. y  e.  B  ( (
( ( F `  a ) D y )  =  0  <->  ( F `  a )  =  y )  /\  A. z  e.  B  ( ( F `  a
) D y )  <_  ( ( z D ( F `  a ) ) + e ( z D y ) ) ) ) )
106105ralrn 5865 . . . . 5  |-  ( F  Fn  V  ->  ( A. x  e.  ran  F A. y  e.  B  ( ( ( x D y )  =  0  <->  x  =  y
)  /\  A. z  e.  B  ( x D y )  <_ 
( ( z D x ) + e
( z D y ) ) )  <->  A. a  e.  V  A. y  e.  B  ( (
( ( F `  a ) D y )  =  0  <->  ( F `  a )  =  y )  /\  A. z  e.  B  ( ( F `  a
) D y )  <_  ( ( z D ( F `  a ) ) + e ( z D y ) ) ) ) )
10726, 106syl 16 . . . 4  |-  ( ph  ->  ( A. x  e. 
ran  F A. y  e.  B  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  B  ( x D y )  <_  ( ( z D x ) + e ( z D y ) ) )  <->  A. a  e.  V  A. y  e.  B  ( ( ( ( F `  a ) D y )  =  0  <->  ( F `  a )  =  y )  /\  A. z  e.  B  ( ( F `  a ) D y )  <_ 
( ( z D ( F `  a
) ) + e
( z D y ) ) ) ) )
10832raleqdv 2902 . . . 4  |-  ( ph  ->  ( A. x  e. 
ran  F A. y  e.  B  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  B  ( x D y )  <_  ( ( z D x ) + e ( z D y ) ) )  <->  A. x  e.  B  A. y  e.  B  ( ( ( x D y )  =  0  <->  x  =  y
)  /\  A. z  e.  B  ( x D y )  <_ 
( ( z D x ) + e
( z D y ) ) ) ) )
109107, 108bitr3d 247 . . 3  |-  ( ph  ->  ( A. a  e.  V  A. y  e.  B  ( ( ( ( F `  a
) D y )  =  0  <->  ( F `  a )  =  y )  /\  A. z  e.  B  ( ( F `  a ) D y )  <_ 
( ( z D ( F `  a
) ) + e
( z D y ) ) )  <->  A. x  e.  B  A. y  e.  B  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  B  ( x D y )  <_  ( ( z D x ) + e ( z D y ) ) ) ) )
11096, 109mpbid 202 . 2  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  ( ( ( x D y )  =  0  <->  x  =  y
)  /\  A. z  e.  B  ( x D y )  <_ 
( ( z D x ) + e
( z D y ) ) ) )
11115elfvexd 5751 . . . 4  |-  ( ph  ->  V  e.  _V )
112 fornex 5962 . . . 4  |-  ( V  e.  _V  ->  ( F : V -onto-> B  ->  B  e.  _V )
)
113111, 5, 112sylc 58 . . 3  |-  ( ph  ->  B  e.  _V )
114 isxmet 18346 . . 3  |-  ( B  e.  _V  ->  ( D  e.  ( * Met `  B )  <->  ( D : ( B  X.  B ) --> RR*  /\  A. x  e.  B  A. y  e.  B  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  B  ( x D y )  <_  (
( z D x ) + e ( z D y ) ) ) ) ) )
115113, 114syl 16 . 2  |-  ( ph  ->  ( D  e.  ( * Met `  B
)  <->  ( D :
( B  X.  B
) --> RR*  /\  A. x  e.  B  A. y  e.  B  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  B  ( x D y )  <_  ( ( z D x ) + e ( z D y ) ) ) ) ) )
11646, 110, 115mpbir2and 889 1  |-  ( ph  ->  D  e.  ( * Met `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   _Vcvv 2948   class class class wbr 4204    X. cxp 4868   ran crn 4871    |` cres 4872    Fn wfn 5441   -->wf 5442   -1-1->wf1 5443   -onto->wfo 5444   -1-1-onto->wf1o 5445   ` cfv 5446  (class class class)co 6073   0cc0 8982   RR*cxr 9111    <_ cle 9113   + ecxad 10700   Basecbs 13461   distcds 13530    "s cimas 13722   * Metcxmt 16678
This theorem is referenced by:  imasf1omet  18398  xpsxmet  18402  imasf1obl  18510  imasf1oxms  18511
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-oi 7471  df-card 7818  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-fz 11036  df-fzo 11128  df-seq 11316  df-hash 11611  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-sca 13537  df-vsca 13538  df-tset 13540  df-ple 13541  df-ds 13543  df-xrs 13718  df-0g 13719  df-gsum 13720  df-imas 13726  df-mre 13803  df-mrc 13804  df-acs 13806  df-mnd 14682  df-submnd 14731  df-mulg 14807  df-cntz 15108  df-cmn 15406  df-xmet 16687
  Copyright terms: Public domain W3C validator