MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasf1oxms Structured version   Unicode version

Theorem imasf1oxms 18519
Description: The image of a metric space is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
imasf1obl.u  |-  ( ph  ->  U  =  ( F 
"s  R ) )
imasf1obl.v  |-  ( ph  ->  V  =  ( Base `  R ) )
imasf1obl.f  |-  ( ph  ->  F : V -1-1-onto-> B )
imasf1oxms.r  |-  ( ph  ->  R  e.  * MetSp )
Assertion
Ref Expression
imasf1oxms  |-  ( ph  ->  U  e.  * MetSp )

Proof of Theorem imasf1oxms
Dummy variables  x  r  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasf1obl.u . . . . 5  |-  ( ph  ->  U  =  ( F 
"s  R ) )
2 imasf1obl.v . . . . 5  |-  ( ph  ->  V  =  ( Base `  R ) )
3 imasf1obl.f . . . . 5  |-  ( ph  ->  F : V -1-1-onto-> B )
4 imasf1oxms.r . . . . 5  |-  ( ph  ->  R  e.  * MetSp )
5 eqid 2436 . . . . 5  |-  ( (
dist `  R )  |`  ( V  X.  V
) )  =  ( ( dist `  R
)  |`  ( V  X.  V ) )
6 eqid 2436 . . . . 5  |-  ( dist `  U )  =  (
dist `  U )
7 eqid 2436 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
8 eqid 2436 . . . . . . . 8  |-  ( (
dist `  R )  |`  ( ( Base `  R
)  X.  ( Base `  R ) ) )  =  ( ( dist `  R )  |`  (
( Base `  R )  X.  ( Base `  R
) ) )
97, 8xmsxmet 18486 . . . . . . 7  |-  ( R  e.  * MetSp  ->  (
( dist `  R )  |`  ( ( Base `  R
)  X.  ( Base `  R ) ) )  e.  ( * Met `  ( Base `  R
) ) )
104, 9syl 16 . . . . . 6  |-  ( ph  ->  ( ( dist `  R
)  |`  ( ( Base `  R )  X.  ( Base `  R ) ) )  e.  ( * Met `  ( Base `  R ) ) )
112, 2xpeq12d 4903 . . . . . . 7  |-  ( ph  ->  ( V  X.  V
)  =  ( (
Base `  R )  X.  ( Base `  R
) ) )
1211reseq2d 5146 . . . . . 6  |-  ( ph  ->  ( ( dist `  R
)  |`  ( V  X.  V ) )  =  ( ( dist `  R
)  |`  ( ( Base `  R )  X.  ( Base `  R ) ) ) )
132fveq2d 5732 . . . . . 6  |-  ( ph  ->  ( * Met `  V
)  =  ( * Met `  ( Base `  R ) ) )
1410, 12, 133eltr4d 2517 . . . . 5  |-  ( ph  ->  ( ( dist `  R
)  |`  ( V  X.  V ) )  e.  ( * Met `  V
) )
151, 2, 3, 4, 5, 6, 14imasf1oxmet 18405 . . . 4  |-  ( ph  ->  ( dist `  U
)  e.  ( * Met `  B ) )
16 f1ofo 5681 . . . . . . 7  |-  ( F : V -1-1-onto-> B  ->  F : V -onto-> B )
173, 16syl 16 . . . . . 6  |-  ( ph  ->  F : V -onto-> B
)
181, 2, 17, 4imasbas 13738 . . . . 5  |-  ( ph  ->  B  =  ( Base `  U ) )
1918fveq2d 5732 . . . 4  |-  ( ph  ->  ( * Met `  B
)  =  ( * Met `  ( Base `  U ) ) )
2015, 19eleqtrd 2512 . . 3  |-  ( ph  ->  ( dist `  U
)  e.  ( * Met `  ( Base `  U ) ) )
21 ssid 3367 . . 3  |-  ( Base `  U )  C_  ( Base `  U )
22 xmetres2 18391 . . 3  |-  ( ( ( dist `  U
)  e.  ( * Met `  ( Base `  U ) )  /\  ( Base `  U )  C_  ( Base `  U
) )  ->  (
( dist `  U )  |`  ( ( Base `  U
)  X.  ( Base `  U ) ) )  e.  ( * Met `  ( Base `  U
) ) )
2320, 21, 22sylancl 644 . 2  |-  ( ph  ->  ( ( dist `  U
)  |`  ( ( Base `  U )  X.  ( Base `  U ) ) )  e.  ( * Met `  ( Base `  U ) ) )
24 eqid 2436 . . . 4  |-  ( TopOpen `  R )  =  (
TopOpen `  R )
25 eqid 2436 . . . 4  |-  ( TopOpen `  U )  =  (
TopOpen `  U )
261, 2, 17, 4, 24, 25imastopn 17752 . . 3  |-  ( ph  ->  ( TopOpen `  U )  =  ( ( TopOpen `  R ) qTop  F )
)
2724, 7, 8xmstopn 18481 . . . . . 6  |-  ( R  e.  * MetSp  ->  ( TopOpen
`  R )  =  ( MetOpen `  ( ( dist `  R )  |`  ( ( Base `  R
)  X.  ( Base `  R ) ) ) ) )
284, 27syl 16 . . . . 5  |-  ( ph  ->  ( TopOpen `  R )  =  ( MetOpen `  (
( dist `  R )  |`  ( ( Base `  R
)  X.  ( Base `  R ) ) ) ) )
2912fveq2d 5732 . . . . 5  |-  ( ph  ->  ( MetOpen `  ( ( dist `  R )  |`  ( V  X.  V
) ) )  =  ( MetOpen `  ( ( dist `  R )  |`  ( ( Base `  R
)  X.  ( Base `  R ) ) ) ) )
3028, 29eqtr4d 2471 . . . 4  |-  ( ph  ->  ( TopOpen `  R )  =  ( MetOpen `  (
( dist `  R )  |`  ( V  X.  V
) ) ) )
3130oveq1d 6096 . . 3  |-  ( ph  ->  ( ( TopOpen `  R
) qTop  F )  =  ( ( MetOpen `  ( ( dist `  R )  |`  ( V  X.  V
) ) ) qTop  F
) )
32 blbas 18460 . . . . . 6  |-  ( ( ( dist `  R
)  |`  ( V  X.  V ) )  e.  ( * Met `  V
)  ->  ran  ( ball `  ( ( dist `  R
)  |`  ( V  X.  V ) ) )  e.  TopBases )
3314, 32syl 16 . . . . 5  |-  ( ph  ->  ran  ( ball `  (
( dist `  R )  |`  ( V  X.  V
) ) )  e.  TopBases )
34 unirnbl 18450 . . . . . . 7  |-  ( ( ( dist `  R
)  |`  ( V  X.  V ) )  e.  ( * Met `  V
)  ->  U. ran  ( ball `  ( ( dist `  R )  |`  ( V  X.  V ) ) )  =  V )
35 f1oeq2 5666 . . . . . . 7  |-  ( U. ran  ( ball `  (
( dist `  R )  |`  ( V  X.  V
) ) )  =  V  ->  ( F : U. ran  ( ball `  ( ( dist `  R
)  |`  ( V  X.  V ) ) ) -1-1-onto-> B  <-> 
F : V -1-1-onto-> B ) )
3614, 34, 353syl 19 . . . . . 6  |-  ( ph  ->  ( F : U. ran  ( ball `  (
( dist `  R )  |`  ( V  X.  V
) ) ) -1-1-onto-> B  <->  F : V
-1-1-onto-> B ) )
373, 36mpbird 224 . . . . 5  |-  ( ph  ->  F : U. ran  ( ball `  ( ( dist `  R )  |`  ( V  X.  V
) ) ) -1-1-onto-> B )
38 eqid 2436 . . . . . 6  |-  U. ran  ( ball `  ( ( dist `  R )  |`  ( V  X.  V
) ) )  = 
U. ran  ( ball `  ( ( dist `  R
)  |`  ( V  X.  V ) ) )
3938tgqtop 17744 . . . . 5  |-  ( ( ran  ( ball `  (
( dist `  R )  |`  ( V  X.  V
) ) )  e.  TopBases 
/\  F : U. ran  ( ball `  (
( dist `  R )  |`  ( V  X.  V
) ) ) -1-1-onto-> B )  ->  ( ( topGen ` 
ran  ( ball `  (
( dist `  R )  |`  ( V  X.  V
) ) ) ) qTop 
F )  =  (
topGen `  ( ran  ( ball `  ( ( dist `  R )  |`  ( V  X.  V ) ) ) qTop  F ) ) )
4033, 37, 39syl2anc 643 . . . 4  |-  ( ph  ->  ( ( topGen `  ran  ( ball `  ( ( dist `  R )  |`  ( V  X.  V
) ) ) ) qTop 
F )  =  (
topGen `  ( ran  ( ball `  ( ( dist `  R )  |`  ( V  X.  V ) ) ) qTop  F ) ) )
41 eqid 2436 . . . . . . 7  |-  ( MetOpen `  ( ( dist `  R
)  |`  ( V  X.  V ) ) )  =  ( MetOpen `  (
( dist `  R )  |`  ( V  X.  V
) ) )
4241mopnval 18468 . . . . . 6  |-  ( ( ( dist `  R
)  |`  ( V  X.  V ) )  e.  ( * Met `  V
)  ->  ( MetOpen `  ( ( dist `  R
)  |`  ( V  X.  V ) ) )  =  ( topGen `  ran  ( ball `  ( ( dist `  R )  |`  ( V  X.  V
) ) ) ) )
4314, 42syl 16 . . . . 5  |-  ( ph  ->  ( MetOpen `  ( ( dist `  R )  |`  ( V  X.  V
) ) )  =  ( topGen `  ran  ( ball `  ( ( dist `  R
)  |`  ( V  X.  V ) ) ) ) )
4443oveq1d 6096 . . . 4  |-  ( ph  ->  ( ( MetOpen `  (
( dist `  R )  |`  ( V  X.  V
) ) ) qTop  F
)  =  ( (
topGen `  ran  ( ball `  ( ( dist `  R
)  |`  ( V  X.  V ) ) ) ) qTop  F ) )
45 eqid 2436 . . . . . . 7  |-  ( MetOpen `  ( dist `  U )
)  =  ( MetOpen `  ( dist `  U )
)
4645mopnval 18468 . . . . . 6  |-  ( (
dist `  U )  e.  ( * Met `  B
)  ->  ( MetOpen `  ( dist `  U )
)  =  ( topGen ` 
ran  ( ball `  ( dist `  U ) ) ) )
4715, 46syl 16 . . . . 5  |-  ( ph  ->  ( MetOpen `  ( dist `  U ) )  =  ( topGen `  ran  ( ball `  ( dist `  U
) ) ) )
48 xmetf 18359 . . . . . . . 8  |-  ( (
dist `  U )  e.  ( * Met `  ( Base `  U ) )  ->  ( dist `  U
) : ( (
Base `  U )  X.  ( Base `  U
) ) --> RR* )
4920, 48syl 16 . . . . . . 7  |-  ( ph  ->  ( dist `  U
) : ( (
Base `  U )  X.  ( Base `  U
) ) --> RR* )
50 ffn 5591 . . . . . . 7  |-  ( (
dist `  U ) : ( ( Base `  U )  X.  ( Base `  U ) ) -->
RR*  ->  ( dist `  U
)  Fn  ( (
Base `  U )  X.  ( Base `  U
) ) )
51 fnresdm 5554 . . . . . . 7  |-  ( (
dist `  U )  Fn  ( ( Base `  U
)  X.  ( Base `  U ) )  -> 
( ( dist `  U
)  |`  ( ( Base `  U )  X.  ( Base `  U ) ) )  =  ( dist `  U ) )
5249, 50, 513syl 19 . . . . . 6  |-  ( ph  ->  ( ( dist `  U
)  |`  ( ( Base `  U )  X.  ( Base `  U ) ) )  =  ( dist `  U ) )
5352fveq2d 5732 . . . . 5  |-  ( ph  ->  ( MetOpen `  ( ( dist `  U )  |`  ( ( Base `  U
)  X.  ( Base `  U ) ) ) )  =  ( MetOpen `  ( dist `  U )
) )
543ad2antrr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  F : V -1-1-onto-> B
)
55 f1of1 5673 . . . . . . . . . . . . . . 15  |-  ( F : V -1-1-onto-> B  ->  F : V -1-1-> B )
5654, 55syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  F : V -1-1-> B )
57 cnvimass 5224 . . . . . . . . . . . . . . 15  |-  ( `' F " x ) 
C_  dom  F
58 f1odm 5678 . . . . . . . . . . . . . . . 16  |-  ( F : V -1-1-onto-> B  ->  dom  F  =  V )
5954, 58syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  dom  F  =  V )
6057, 59syl5sseq 3396 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  ( `' F " x )  C_  V
)
6114ad2antrr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  ( ( dist `  R )  |`  ( V  X.  V ) )  e.  ( * Met `  V ) )
62 simprl 733 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  y  e.  V
)
63 simprr 734 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  r  e.  RR* )
64 blssm 18448 . . . . . . . . . . . . . . 15  |-  ( ( ( ( dist `  R
)  |`  ( V  X.  V ) )  e.  ( * Met `  V
)  /\  y  e.  V  /\  r  e.  RR* )  ->  ( y (
ball `  ( ( dist `  R )  |`  ( V  X.  V
) ) ) r )  C_  V )
6561, 62, 63, 64syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  ( y (
ball `  ( ( dist `  R )  |`  ( V  X.  V
) ) ) r )  C_  V )
66 f1imaeq 6011 . . . . . . . . . . . . . 14  |-  ( ( F : V -1-1-> B  /\  ( ( `' F " x )  C_  V  /\  ( y ( ball `  ( ( dist `  R
)  |`  ( V  X.  V ) ) ) r )  C_  V
) )  ->  (
( F " ( `' F " x ) )  =  ( F
" ( y (
ball `  ( ( dist `  R )  |`  ( V  X.  V
) ) ) r ) )  <->  ( `' F " x )  =  ( y ( ball `  ( ( dist `  R
)  |`  ( V  X.  V ) ) ) r ) ) )
6756, 60, 65, 66syl12anc 1182 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  ( ( F
" ( `' F " x ) )  =  ( F " (
y ( ball `  (
( dist `  R )  |`  ( V  X.  V
) ) ) r ) )  <->  ( `' F " x )  =  ( y ( ball `  ( ( dist `  R
)  |`  ( V  X.  V ) ) ) r ) ) )
6854, 16syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  F : V -onto-> B )
69 simplr 732 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  x  C_  B
)
70 foimacnv 5692 . . . . . . . . . . . . . . 15  |-  ( ( F : V -onto-> B  /\  x  C_  B )  ->  ( F "
( `' F "
x ) )  =  x )
7168, 69, 70syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  ( F "
( `' F "
x ) )  =  x )
721ad2antrr 707 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  U  =  ( F  "s  R ) )
732ad2antrr 707 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  V  =  (
Base `  R )
)
744ad2antrr 707 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  R  e.  * MetSp )
7572, 73, 54, 74, 5, 6, 61, 62, 63imasf1obl 18518 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  ( ( F `
 y ) (
ball `  ( dist `  U ) ) r )  =  ( F
" ( y (
ball `  ( ( dist `  R )  |`  ( V  X.  V
) ) ) r ) ) )
7675eqcomd 2441 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  ( F "
( y ( ball `  ( ( dist `  R
)  |`  ( V  X.  V ) ) ) r ) )  =  ( ( F `  y ) ( ball `  ( dist `  U
) ) r ) )
7771, 76eqeq12d 2450 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  ( ( F
" ( `' F " x ) )  =  ( F " (
y ( ball `  (
( dist `  R )  |`  ( V  X.  V
) ) ) r ) )  <->  x  =  ( ( F `  y ) ( ball `  ( dist `  U
) ) r ) ) )
7867, 77bitr3d 247 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  C_  B )  /\  (
y  e.  V  /\  r  e.  RR* ) )  ->  ( ( `' F " x )  =  ( y (
ball `  ( ( dist `  R )  |`  ( V  X.  V
) ) ) r )  <->  x  =  (
( F `  y
) ( ball `  ( dist `  U ) ) r ) ) )
79782rexbidva 2746 . . . . . . . . . . 11  |-  ( (
ph  /\  x  C_  B
)  ->  ( E. y  e.  V  E. r  e.  RR*  ( `' F " x )  =  ( y (
ball `  ( ( dist `  R )  |`  ( V  X.  V
) ) ) r )  <->  E. y  e.  V  E. r  e.  RR*  x  =  ( ( F `
 y ) (
ball `  ( dist `  U ) ) r ) ) )
803adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  C_  B
)  ->  F : V
-1-1-onto-> B )
81 f1ofn 5675 . . . . . . . . . . . 12  |-  ( F : V -1-1-onto-> B  ->  F  Fn  V )
82 oveq1 6088 . . . . . . . . . . . . . . 15  |-  ( z  =  ( F `  y )  ->  (
z ( ball `  ( dist `  U ) ) r )  =  ( ( F `  y
) ( ball `  ( dist `  U ) ) r ) )
8382eqeq2d 2447 . . . . . . . . . . . . . 14  |-  ( z  =  ( F `  y )  ->  (
x  =  ( z ( ball `  ( dist `  U ) ) r )  <->  x  =  ( ( F `  y ) ( ball `  ( dist `  U
) ) r ) ) )
8483rexbidv 2726 . . . . . . . . . . . . 13  |-  ( z  =  ( F `  y )  ->  ( E. r  e.  RR*  x  =  ( z (
ball `  ( dist `  U ) ) r )  <->  E. r  e.  RR*  x  =  ( ( F `  y )
( ball `  ( dist `  U ) ) r ) ) )
8584rexrn 5872 . . . . . . . . . . . 12  |-  ( F  Fn  V  ->  ( E. z  e.  ran  F E. r  e.  RR*  x  =  ( z
( ball `  ( dist `  U ) ) r )  <->  E. y  e.  V  E. r  e.  RR*  x  =  ( ( F `
 y ) (
ball `  ( dist `  U ) ) r ) ) )
8680, 81, 853syl 19 . . . . . . . . . . 11  |-  ( (
ph  /\  x  C_  B
)  ->  ( E. z  e.  ran  F E. r  e.  RR*  x  =  ( z ( ball `  ( dist `  U
) ) r )  <->  E. y  e.  V  E. r  e.  RR*  x  =  ( ( F `
 y ) (
ball `  ( dist `  U ) ) r ) ) )
87 forn 5656 . . . . . . . . . . . . 13  |-  ( F : V -onto-> B  ->  ran  F  =  B )
8880, 16, 873syl 19 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  C_  B
)  ->  ran  F  =  B )
8988rexeqdv 2911 . . . . . . . . . . 11  |-  ( (
ph  /\  x  C_  B
)  ->  ( E. z  e.  ran  F E. r  e.  RR*  x  =  ( z ( ball `  ( dist `  U
) ) r )  <->  E. z  e.  B  E. r  e.  RR*  x  =  ( z (
ball `  ( dist `  U ) ) r ) ) )
9079, 86, 893bitr2d 273 . . . . . . . . . 10  |-  ( (
ph  /\  x  C_  B
)  ->  ( E. y  e.  V  E. r  e.  RR*  ( `' F " x )  =  ( y (
ball `  ( ( dist `  R )  |`  ( V  X.  V
) ) ) r )  <->  E. z  e.  B  E. r  e.  RR*  x  =  ( z (
ball `  ( dist `  U ) ) r ) ) )
9114adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  x  C_  B
)  ->  ( ( dist `  R )  |`  ( V  X.  V
) )  e.  ( * Met `  V
) )
92 blrn 18439 . . . . . . . . . . 11  |-  ( ( ( dist `  R
)  |`  ( V  X.  V ) )  e.  ( * Met `  V
)  ->  ( ( `' F " x )  e.  ran  ( ball `  ( ( dist `  R
)  |`  ( V  X.  V ) ) )  <->  E. y  e.  V  E. r  e.  RR*  ( `' F " x )  =  ( y (
ball `  ( ( dist `  R )  |`  ( V  X.  V
) ) ) r ) ) )
9391, 92syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  x  C_  B
)  ->  ( ( `' F " x )  e.  ran  ( ball `  ( ( dist `  R
)  |`  ( V  X.  V ) ) )  <->  E. y  e.  V  E. r  e.  RR*  ( `' F " x )  =  ( y (
ball `  ( ( dist `  R )  |`  ( V  X.  V
) ) ) r ) ) )
9415adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  x  C_  B
)  ->  ( dist `  U )  e.  ( * Met `  B
) )
95 blrn 18439 . . . . . . . . . . 11  |-  ( (
dist `  U )  e.  ( * Met `  B
)  ->  ( x  e.  ran  ( ball `  ( dist `  U ) )  <->  E. z  e.  B  E. r  e.  RR*  x  =  ( z (
ball `  ( dist `  U ) ) r ) ) )
9694, 95syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  x  C_  B
)  ->  ( x  e.  ran  ( ball `  ( dist `  U ) )  <->  E. z  e.  B  E. r  e.  RR*  x  =  ( z (
ball `  ( dist `  U ) ) r ) ) )
9790, 93, 963bitr4d 277 . . . . . . . . 9  |-  ( (
ph  /\  x  C_  B
)  ->  ( ( `' F " x )  e.  ran  ( ball `  ( ( dist `  R
)  |`  ( V  X.  V ) ) )  <-> 
x  e.  ran  ( ball `  ( dist `  U
) ) ) )
9897pm5.32da 623 . . . . . . . 8  |-  ( ph  ->  ( ( x  C_  B  /\  ( `' F " x )  e.  ran  ( ball `  ( ( dist `  R )  |`  ( V  X.  V
) ) ) )  <-> 
( x  C_  B  /\  x  e.  ran  ( ball `  ( dist `  U ) ) ) ) )
99 f1ofo 5681 . . . . . . . . . 10  |-  ( F : U. ran  ( ball `  ( ( dist `  R )  |`  ( V  X.  V ) ) ) -1-1-onto-> B  ->  F : U. ran  ( ball `  (
( dist `  R )  |`  ( V  X.  V
) ) ) -onto-> B )
10037, 99syl 16 . . . . . . . . 9  |-  ( ph  ->  F : U. ran  ( ball `  ( ( dist `  R )  |`  ( V  X.  V
) ) ) -onto-> B )
10138elqtop2 17733 . . . . . . . . 9  |-  ( ( ran  ( ball `  (
( dist `  R )  |`  ( V  X.  V
) ) )  e.  TopBases 
/\  F : U. ran  ( ball `  (
( dist `  R )  |`  ( V  X.  V
) ) ) -onto-> B )  ->  ( x  e.  ( ran  ( ball `  ( ( dist `  R
)  |`  ( V  X.  V ) ) ) qTop 
F )  <->  ( x  C_  B  /\  ( `' F " x )  e.  ran  ( ball `  ( ( dist `  R
)  |`  ( V  X.  V ) ) ) ) ) )
10233, 100, 101syl2anc 643 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( ran  ( ball `  (
( dist `  R )  |`  ( V  X.  V
) ) ) qTop  F
)  <->  ( x  C_  B  /\  ( `' F " x )  e.  ran  ( ball `  ( ( dist `  R )  |`  ( V  X.  V
) ) ) ) ) )
103 blf 18437 . . . . . . . . . . . 12  |-  ( (
dist `  U )  e.  ( * Met `  B
)  ->  ( ball `  ( dist `  U
) ) : ( B  X.  RR* ) --> ~P B )
104 frn 5597 . . . . . . . . . . . 12  |-  ( (
ball `  ( dist `  U ) ) : ( B  X.  RR* )
--> ~P B  ->  ran  ( ball `  ( dist `  U ) )  C_  ~P B )
10515, 103, 1043syl 19 . . . . . . . . . . 11  |-  ( ph  ->  ran  ( ball `  ( dist `  U ) ) 
C_  ~P B )
106105sseld 3347 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ran  ( ball `  ( dist `  U ) )  ->  x  e.  ~P B
) )
107 elpwi 3807 . . . . . . . . . 10  |-  ( x  e.  ~P B  ->  x  C_  B )
108106, 107syl6 31 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ran  ( ball `  ( dist `  U ) )  ->  x  C_  B ) )
109108pm4.71rd 617 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ran  ( ball `  ( dist `  U ) )  <->  ( x  C_  B  /\  x  e. 
ran  ( ball `  ( dist `  U ) ) ) ) )
11098, 102, 1093bitr4d 277 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( ran  ( ball `  (
( dist `  R )  |`  ( V  X.  V
) ) ) qTop  F
)  <->  x  e.  ran  ( ball `  ( dist `  U ) ) ) )
111110eqrdv 2434 . . . . . 6  |-  ( ph  ->  ( ran  ( ball `  ( ( dist `  R
)  |`  ( V  X.  V ) ) ) qTop 
F )  =  ran  ( ball `  ( dist `  U ) ) )
112111fveq2d 5732 . . . . 5  |-  ( ph  ->  ( topGen `  ( ran  ( ball `  ( ( dist `  R )  |`  ( V  X.  V
) ) ) qTop  F
) )  =  (
topGen `  ran  ( ball `  ( dist `  U
) ) ) )
11347, 53, 1123eqtr4d 2478 . . . 4  |-  ( ph  ->  ( MetOpen `  ( ( dist `  U )  |`  ( ( Base `  U
)  X.  ( Base `  U ) ) ) )  =  ( topGen `  ( ran  ( ball `  ( ( dist `  R
)  |`  ( V  X.  V ) ) ) qTop 
F ) ) )
11440, 44, 1133eqtr4d 2478 . . 3  |-  ( ph  ->  ( ( MetOpen `  (
( dist `  R )  |`  ( V  X.  V
) ) ) qTop  F
)  =  ( MetOpen `  ( ( dist `  U
)  |`  ( ( Base `  U )  X.  ( Base `  U ) ) ) ) )
11526, 31, 1143eqtrd 2472 . 2  |-  ( ph  ->  ( TopOpen `  U )  =  ( MetOpen `  (
( dist `  U )  |`  ( ( Base `  U
)  X.  ( Base `  U ) ) ) ) )
116 eqid 2436 . . 3  |-  ( Base `  U )  =  (
Base `  U )
117 eqid 2436 . . 3  |-  ( (
dist `  U )  |`  ( ( Base `  U
)  X.  ( Base `  U ) ) )  =  ( ( dist `  U )  |`  (
( Base `  U )  X.  ( Base `  U
) ) )
11825, 116, 117isxms2 18478 . 2  |-  ( U  e.  * MetSp  <->  ( (
( dist `  U )  |`  ( ( Base `  U
)  X.  ( Base `  U ) ) )  e.  ( * Met `  ( Base `  U
) )  /\  ( TopOpen
`  U )  =  ( MetOpen `  ( ( dist `  U )  |`  ( ( Base `  U
)  X.  ( Base `  U ) ) ) ) ) )
11923, 115, 118sylanbrc 646 1  |-  ( ph  ->  U  e.  * MetSp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   E.wrex 2706    C_ wss 3320   ~Pcpw 3799   U.cuni 4015    X. cxp 4876   `'ccnv 4877   dom cdm 4878   ran crn 4879    |` cres 4880   "cima 4881    Fn wfn 5449   -->wf 5450   -1-1->wf1 5451   -onto->wfo 5452   -1-1-onto->wf1o 5453   ` cfv 5454  (class class class)co 6081   RR*cxr 9119   Basecbs 13469   distcds 13538   TopOpenctopn 13649   topGenctg 13665   qTop cqtop 13729    "s cimas 13730   * Metcxmt 16686   ballcbl 16688   MetOpencmopn 16691   TopBasesctb 16962   * MetSpcxme 18347
This theorem is referenced by:  imasf1oms  18520  xpsxms  18564
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-sup 7446  df-oi 7479  df-card 7826  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-fz 11044  df-fzo 11136  df-seq 11324  df-hash 11619  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-rest 13650  df-topn 13651  df-topgen 13667  df-xrs 13726  df-0g 13727  df-gsum 13728  df-qtop 13733  df-imas 13734  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-submnd 14739  df-mulg 14815  df-cntz 15116  df-cmn 15414  df-psmet 16694  df-xmet 16695  df-bl 16697  df-mopn 16698  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-xms 18350
  Copyright terms: Public domain W3C validator