Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasgim Unicode version

Theorem imasgim 26587
Description: A relabeling of the elements of a group induces an isomorphism to the relabeled group. MOVABLE (Contributed by Stefan O'Rear, 8-Jul-2015.) (Revised by Mario Carneiro, 11-Aug-2015.)
Hypotheses
Ref Expression
imasgim.u  |-  ( ph  ->  U  =  ( F 
"s  R ) )
imasgim.v  |-  ( ph  ->  V  =  ( Base `  R ) )
imasgim.f  |-  ( ph  ->  F : V -1-1-onto-> B )
imasgim.r  |-  ( ph  ->  R  e.  Grp )
Assertion
Ref Expression
imasgim  |-  ( ph  ->  F  e.  ( R GrpIso  U ) )

Proof of Theorem imasgim
Dummy variables  a 
b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2358 . . 3  |-  ( Base `  R )  =  (
Base `  R )
2 eqid 2358 . . 3  |-  ( Base `  U )  =  (
Base `  U )
3 eqid 2358 . . 3  |-  ( +g  `  R )  =  ( +g  `  R )
4 eqid 2358 . . 3  |-  ( +g  `  U )  =  ( +g  `  U )
5 imasgim.r . . 3  |-  ( ph  ->  R  e.  Grp )
6 imasgim.u . . . . 5  |-  ( ph  ->  U  =  ( F 
"s  R ) )
7 imasgim.v . . . . 5  |-  ( ph  ->  V  =  ( Base `  R ) )
8 eqidd 2359 . . . . 5  |-  ( ph  ->  ( +g  `  R
)  =  ( +g  `  R ) )
9 imasgim.f . . . . . 6  |-  ( ph  ->  F : V -1-1-onto-> B )
10 f1ofo 5562 . . . . . 6  |-  ( F : V -1-1-onto-> B  ->  F : V -onto-> B )
119, 10syl 15 . . . . 5  |-  ( ph  ->  F : V -onto-> B
)
129f1ocpbl 13526 . . . . 5  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
c  e.  V  /\  d  e.  V )
)  ->  ( (
( F `  a
)  =  ( F `
 c )  /\  ( F `  b )  =  ( F `  d ) )  -> 
( F `  (
a ( +g  `  R
) b ) )  =  ( F `  ( c ( +g  `  R ) d ) ) ) )
13 eqid 2358 . . . . 5  |-  ( 0g
`  R )  =  ( 0g `  R
)
146, 7, 8, 11, 12, 5, 13imasgrp 14710 . . . 4  |-  ( ph  ->  ( U  e.  Grp  /\  ( F `  ( 0g `  R ) )  =  ( 0g `  U ) ) )
1514simpld 445 . . 3  |-  ( ph  ->  U  e.  Grp )
166, 7, 11, 5imasbas 13514 . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  U ) )
17 f1oeq3 5548 . . . . . . 7  |-  ( B  =  ( Base `  U
)  ->  ( F : V -1-1-onto-> B  <->  F : V -1-1-onto-> ( Base `  U ) ) )
1816, 17syl 15 . . . . . 6  |-  ( ph  ->  ( F : V -1-1-onto-> B  <->  F : V -1-1-onto-> ( Base `  U
) ) )
199, 18mpbid 201 . . . . 5  |-  ( ph  ->  F : V -1-1-onto-> ( Base `  U ) )
20 f1oeq2 5547 . . . . . 6  |-  ( V  =  ( Base `  R
)  ->  ( F : V -1-1-onto-> ( Base `  U
)  <->  F : ( Base `  R ) -1-1-onto-> ( Base `  U
) ) )
217, 20syl 15 . . . . 5  |-  ( ph  ->  ( F : V -1-1-onto-> ( Base `  U )  <->  F :
( Base `  R ) -1-1-onto-> ( Base `  U ) ) )
2219, 21mpbid 201 . . . 4  |-  ( ph  ->  F : ( Base `  R ) -1-1-onto-> ( Base `  U
) )
23 f1of 5555 . . . 4  |-  ( F : ( Base `  R
)
-1-1-onto-> ( Base `  U )  ->  F : ( Base `  R ) --> ( Base `  U ) )
2422, 23syl 15 . . 3  |-  ( ph  ->  F : ( Base `  R ) --> ( Base `  U ) )
257eleq2d 2425 . . . . . 6  |-  ( ph  ->  ( a  e.  V  <->  a  e.  ( Base `  R
) ) )
267eleq2d 2425 . . . . . 6  |-  ( ph  ->  ( b  e.  V  <->  b  e.  ( Base `  R
) ) )
2725, 26anbi12d 691 . . . . 5  |-  ( ph  ->  ( ( a  e.  V  /\  b  e.  V )  <->  ( a  e.  ( Base `  R
)  /\  b  e.  ( Base `  R )
) ) )
2811, 12, 6, 7, 5, 3, 4imasaddval 13533 . . . . . . 7  |-  ( (
ph  /\  a  e.  V  /\  b  e.  V
)  ->  ( ( F `  a )
( +g  `  U ) ( F `  b
) )  =  ( F `  ( a ( +g  `  R
) b ) ) )
2928eqcomd 2363 . . . . . 6  |-  ( (
ph  /\  a  e.  V  /\  b  e.  V
)  ->  ( F `  ( a ( +g  `  R ) b ) )  =  ( ( F `  a ) ( +g  `  U
) ( F `  b ) ) )
30293expib 1154 . . . . 5  |-  ( ph  ->  ( ( a  e.  V  /\  b  e.  V )  ->  ( F `  ( a
( +g  `  R ) b ) )  =  ( ( F `  a ) ( +g  `  U ) ( F `
 b ) ) ) )
3127, 30sylbird 226 . . . 4  |-  ( ph  ->  ( ( a  e.  ( Base `  R
)  /\  b  e.  ( Base `  R )
)  ->  ( F `  ( a ( +g  `  R ) b ) )  =  ( ( F `  a ) ( +g  `  U
) ( F `  b ) ) ) )
3231imp 418 . . 3  |-  ( (
ph  /\  ( a  e.  ( Base `  R
)  /\  b  e.  ( Base `  R )
) )  ->  ( F `  ( a
( +g  `  R ) b ) )  =  ( ( F `  a ) ( +g  `  U ) ( F `
 b ) ) )
331, 2, 3, 4, 5, 15, 24, 32isghmd 14791 . 2  |-  ( ph  ->  F  e.  ( R 
GrpHom  U ) )
341, 2isgim 14825 . 2  |-  ( F  e.  ( R GrpIso  U
)  <->  ( F  e.  ( R  GrpHom  U )  /\  F : (
Base `  R ) -1-1-onto-> ( Base `  U ) ) )
3533, 22, 34sylanbrc 645 1  |-  ( ph  ->  F  e.  ( R GrpIso  U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710   -->wf 5333   -onto->wfo 5335   -1-1-onto->wf1o 5336   ` cfv 5337  (class class class)co 5945   Basecbs 13245   +g cplusg 13305   0gc0g 13499    "s cimas 13506   Grpcgrp 14461    GrpHom cghm 14779   GrpIso cgim 14820
This theorem is referenced by:  isnumbasgrplem1  26589
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-int 3944  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-riota 6391  df-recs 6475  df-rdg 6510  df-1o 6566  df-oadd 6570  df-er 6747  df-en 6952  df-dom 6953  df-sdom 6954  df-fin 6955  df-sup 7284  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-nn 9837  df-2 9894  df-3 9895  df-4 9896  df-5 9897  df-6 9898  df-7 9899  df-8 9900  df-9 9901  df-10 9902  df-n0 10058  df-z 10117  df-dec 10217  df-uz 10323  df-fz 10875  df-struct 13247  df-ndx 13248  df-slot 13249  df-base 13250  df-plusg 13318  df-mulr 13319  df-sca 13321  df-vsca 13322  df-tset 13324  df-ple 13325  df-ds 13327  df-0g 13503  df-imas 13510  df-mnd 14466  df-grp 14588  df-minusg 14589  df-ghm 14780  df-gim 14822
  Copyright terms: Public domain W3C validator